已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-based artificial intelligence for assisting diagnosis, assessment and treatment in soft tissue sarcomas

人工智能 计算机科学 深度学习 机器学习
作者
Ruiling Xu,Jinxin Tang,Chenbei Li,Hua Wang,Lan Li,Yu He,Chao Tu,Zhihong Li
标识
DOI:10.1016/j.metrad.2024.100069
摘要

Soft tissue sarcomas (STSs) represent a group of heterogeneous mesenchymal tumors of which are generally classified as per the histopathology. Despite being rare in incidence and prevalence, STSs are usually correlated with unfavorable prognosis and high mortality rate. Early and accurate diagnosis of STSs are critical in clinical management of STSs. Deep learning (DL) refers to a subtype of artificial intelligence that has been adopted to assist healthcare professionals to optimize personalized treatment for a given situation, particularly in image analysis. Recently, emerging studies have demonstrated that application of DL based on medical images could substantially improve the accuracy and efficiency of clinicians to the identification, diagnosis, treatment, and prognosis prediction of STSs, and thereby facilitating the clinical decision-making. Herein, we aimed to extensively summarize the recent applications of DL-based artificial intelligence in STSs from the aspects of data acquisition, algorithm, and model establishment. Besides, the reinforcement of the model by transfer learning and generative adversarial network (GAN) for data augmentation has also been elaborated. It is worth noting that high-quality data with accurate annotations, as well as optimized algorithmic performance are pivotal in the clinical application of DL in STSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkkkk完成签到,获得积分10
2秒前
2秒前
5秒前
酷炫紫萍发布了新的文献求助10
5秒前
王富贵发布了新的文献求助10
8秒前
judy完成签到,获得积分10
10秒前
酷炫紫萍完成签到,获得积分10
12秒前
发发完成签到,获得积分10
13秒前
14秒前
希望天下0贩的0应助无1122采纳,获得10
15秒前
15秒前
吖牙完成签到,获得积分10
15秒前
yellow发布了新的文献求助10
17秒前
英俊的铭应助Sophia采纳,获得10
17秒前
小蘑菇应助等待的靖雁采纳,获得10
18秒前
甜甜谷雪发布了新的文献求助10
18秒前
19秒前
开心夏真发布了新的文献求助10
21秒前
22秒前
风中音响发布了新的文献求助30
23秒前
CipherSage应助李想采纳,获得10
26秒前
mhl11应助zzl采纳,获得10
27秒前
99v587完成签到,获得积分10
33秒前
sfx发布了新的文献求助10
35秒前
36秒前
36秒前
谦让远望发布了新的文献求助10
40秒前
40秒前
李想发布了新的文献求助10
41秒前
sfx完成签到,获得积分10
42秒前
不晓天完成签到,获得积分10
44秒前
46秒前
不准吃烤肉完成签到,获得积分10
52秒前
52秒前
李想完成签到,获得积分20
54秒前
lalala发布了新的文献求助10
55秒前
可爱的函函应助jiujiuhuang采纳,获得10
56秒前
王富贵完成签到,获得积分20
56秒前
于夜柳完成签到,获得积分20
58秒前
咕噜咕噜发布了新的文献求助10
58秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310962
求助须知:如何正确求助?哪些是违规求助? 2943713
关于积分的说明 8516191
捐赠科研通 2619029
什么是DOI,文献DOI怎么找? 1431813
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649752