Deep learning-based artificial intelligence for assisting diagnosis, assessment and treatment in soft tissue sarcomas

人工智能 计算机科学 深度学习 机器学习
作者
Ruiling Xu,Jinxin Tang,Chenbei Li,Hua Wang,Lan Li,Yu He,Chao Tu,Zhihong Li
标识
DOI:10.1016/j.metrad.2024.100069
摘要

Soft tissue sarcomas (STSs) represent a group of heterogeneous mesenchymal tumors of which are generally classified as per the histopathology. Despite being rare in incidence and prevalence, STSs are usually correlated with unfavorable prognosis and high mortality rate. Early and accurate diagnosis of STSs are critical in clinical management of STSs. Deep learning (DL) refers to a subtype of artificial intelligence that has been adopted to assist healthcare professionals to optimize personalized treatment for a given situation, particularly in image analysis. Recently, emerging studies have demonstrated that application of DL based on medical images could substantially improve the accuracy and efficiency of clinicians to the identification, diagnosis, treatment, and prognosis prediction of STSs, and thereby facilitating the clinical decision-making. Herein, we aimed to extensively summarize the recent applications of DL-based artificial intelligence in STSs from the aspects of data acquisition, algorithm, and model establishment. Besides, the reinforcement of the model by transfer learning and generative adversarial network (GAN) for data augmentation has also been elaborated. It is worth noting that high-quality data with accurate annotations, as well as optimized algorithmic performance are pivotal in the clinical application of DL in STSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yi发布了新的文献求助10
1秒前
K2L发布了新的文献求助10
1秒前
jenningseastera应助勤恳觅珍采纳,获得10
1秒前
cdercder应助勤恳觅珍采纳,获得10
1秒前
zhentg发布了新的文献求助10
1秒前
3秒前
研友_Z30Kz8完成签到,获得积分10
4秒前
NexusExplorer应助陌小千采纳,获得10
4秒前
我鬼混回来了完成签到 ,获得积分10
4秒前
gzsy发布了新的文献求助10
5秒前
雷卿完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
安然发布了新的文献求助10
6秒前
fisher发布了新的文献求助30
7秒前
搬砖达人发布了新的文献求助30
8秒前
8秒前
熙若白完成签到,获得积分10
8秒前
8秒前
8秒前
辛勤凝阳发布了新的文献求助10
8秒前
zhao完成签到,获得积分20
9秒前
9秒前
活性氧发布了新的文献求助10
9秒前
钰宁完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
耳机单蹦发布了新的文献求助10
10秒前
goblin完成签到,获得积分10
11秒前
12秒前
12秒前
LHG发布了新的文献求助10
14秒前
脑洞疼应助runli采纳,获得10
14秒前
美羊羊发布了新的文献求助10
14秒前
念辞发布了新的文献求助10
15秒前
15秒前
qq完成签到,获得积分10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765185
求助须知:如何正确求助?哪些是违规求助? 3309787
关于积分的说明 10151936
捐赠科研通 3025044
什么是DOI,文献DOI怎么找? 1660410
邀请新用户注册赠送积分活动 793232
科研通“疑难数据库(出版商)”最低求助积分说明 755495