A deep Learning-based approach for landslide dating from time-series of SAR data

系列(地层学) 山崩 地质学 时间序列 遥感 地震学 计算机科学 机器学习 古生物学
作者
Wandi Wang,Mahdi Motagh,Zhuge Xia,Simon Plank,Zhe Li,Aiym Orynbaikyzy,Kunlong Yin,Sigrid Roessner
标识
DOI:10.5194/egusphere-egu24-12097
摘要

Landslides are a serious geologic hazard common to many countries around the world.  They can result in fatalities and the destruction of infrastructure, buildings, roads, and electrical equipment. Especially rapid-moving landslides, which occur suddenly and travel at high speeds for miles, can pose a serious threat to life and property. Landslide inventories are essential to understand the evolution of landscapes, and to ascertain landslide susceptibility and hazard, and it can be of help for any further hazard and risk analysis. Although  many landslides inventories have already been created worldwide, often these archives of historical landslide events  lack precise information on the date of landslide occurrence. Many of these inventories also lack completeness especially in case of smaller landslides which is also caused by  landslides erosion processes, human impact, and vegetation  regrowth. Precise determination of landslide occurrence time is a big challenge in  landslide research. Optical and Synthetic Aperture Radar (SAR) images with multi-spectral and textural features, multi-temporal revisit rates, and large area coverage provide opportunities for landslide detection and mapping. Landslide-prone regions are frequently obscured by cloud cover, limiting the utility of optical imagery. The capacity of SAR sensors to penetrate clouds allows the use of SAR satellite data to provide a more precise temporal characterization of the occurrence of landslides on a regional scale. The archived Copernicus Sentinel-1 satellite, which has a 6 to 12-day revisit period and covers the majority of the world's landmass, allows for more precise identification of landslide failure timings. The time-series of SAR amplitude, interferometric coherence, and polarimetric features (alpha and entropy) have strong responses to landslide failures in vegetated regions. This is characterized by a sudden increase or decrease in their values. Consequently, the abrupt shifts in the time-series of SAR-derived parameters, triggered by the failure, can be recognized and regarded as the failure occurrence time. The aim of this study is to determine the time period of failure occurrences by automatically detecting abrupt changes in the time series of SAR-derived parameters. We present a strategy for anomaly detection in time-series based on deep-learning to identify the failure time using four parameters derived from SAR time series. In this strategy, we introduce a gated relative position bias to an unsupervised Transformer model to detect anomalies in a multivariate time-series composed of four SAR-derived parameters. We conduct an experiment involving multiple landslides and compare the performance of our proposed strategy for detection of the failure time period with that of the LSTM model. Our strategy successfully identifies the time of landslide failure, which closely approximates the actual time of occurrence when compared to the LSTM model employed in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白日焰火发布了新的文献求助10
刚刚
上官若男应助lxlcx采纳,获得30
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
积极的笙发布了新的文献求助10
3秒前
眼睛大的念桃完成签到,获得积分10
4秒前
所所应助Dawn_ZZZ采纳,获得10
4秒前
会飞的猪发布了新的文献求助10
4秒前
wanci应助欢乐佩奇采纳,获得10
6秒前
脚丫当当发布了新的文献求助10
6秒前
巫马尔槐发布了新的文献求助10
7秒前
小布莱克发布了新的文献求助10
7秒前
Ava应助梦想采纳,获得10
8秒前
8秒前
风中水风发布了新的文献求助10
8秒前
一一一发布了新的文献求助10
8秒前
kk发布了新的文献求助10
9秒前
985211发布了新的文献求助10
9秒前
善学以致用应助温暖宛儿采纳,获得10
10秒前
在水一方应助gwd采纳,获得10
11秒前
11秒前
猪猪hero发布了新的文献求助10
12秒前
华仔应助tong77采纳,获得10
12秒前
12秒前
Ranchoujay完成签到,获得积分10
13秒前
16秒前
16秒前
16秒前
哈里谢顿完成签到,获得积分20
16秒前
lapidary发布了新的文献求助10
16秒前
17秒前
17秒前
蓝色花生豆完成签到,获得积分10
17秒前
Lucas应助会飞的猪采纳,获得10
17秒前
17秒前
kk发布了新的文献求助10
19秒前
梦想发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141