A deep Learning-based approach for landslide dating from time-series of SAR data

系列(地层学) 山崩 地质学 时间序列 遥感 地震学 计算机科学 机器学习 古生物学
作者
Wandi Wang,Mahdi Motagh,Zhuge Xia,Simon Plank,Zhe Li,Aiym Orynbaikyzy,Kunlong Yin,Sigrid Roessner
标识
DOI:10.5194/egusphere-egu24-12097
摘要

Landslides are a serious geologic hazard common to many countries around the world.  They can result in fatalities and the destruction of infrastructure, buildings, roads, and electrical equipment. Especially rapid-moving landslides, which occur suddenly and travel at high speeds for miles, can pose a serious threat to life and property. Landslide inventories are essential to understand the evolution of landscapes, and to ascertain landslide susceptibility and hazard, and it can be of help for any further hazard and risk analysis. Although  many landslides inventories have already been created worldwide, often these archives of historical landslide events  lack precise information on the date of landslide occurrence. Many of these inventories also lack completeness especially in case of smaller landslides which is also caused by  landslides erosion processes, human impact, and vegetation  regrowth. Precise determination of landslide occurrence time is a big challenge in  landslide research. Optical and Synthetic Aperture Radar (SAR) images with multi-spectral and textural features, multi-temporal revisit rates, and large area coverage provide opportunities for landslide detection and mapping. Landslide-prone regions are frequently obscured by cloud cover, limiting the utility of optical imagery. The capacity of SAR sensors to penetrate clouds allows the use of SAR satellite data to provide a more precise temporal characterization of the occurrence of landslides on a regional scale. The archived Copernicus Sentinel-1 satellite, which has a 6 to 12-day revisit period and covers the majority of the world's landmass, allows for more precise identification of landslide failure timings. The time-series of SAR amplitude, interferometric coherence, and polarimetric features (alpha and entropy) have strong responses to landslide failures in vegetated regions. This is characterized by a sudden increase or decrease in their values. Consequently, the abrupt shifts in the time-series of SAR-derived parameters, triggered by the failure, can be recognized and regarded as the failure occurrence time. The aim of this study is to determine the time period of failure occurrences by automatically detecting abrupt changes in the time series of SAR-derived parameters. We present a strategy for anomaly detection in time-series based on deep-learning to identify the failure time using four parameters derived from SAR time series. In this strategy, we introduce a gated relative position bias to an unsupervised Transformer model to detect anomalies in a multivariate time-series composed of four SAR-derived parameters. We conduct an experiment involving multiple landslides and compare the performance of our proposed strategy for detection of the failure time period with that of the LSTM model. Our strategy successfully identifies the time of landslide failure, which closely approximates the actual time of occurrence when compared to the LSTM model employed in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pcr163应助scl采纳,获得200
2秒前
3秒前
请叫我鬼才完成签到,获得积分10
4秒前
脑洞疼应助哎呀小艾哈采纳,获得10
5秒前
木有完成签到 ,获得积分10
6秒前
6秒前
7秒前
玲玲发布了新的文献求助10
8秒前
cqc完成签到,获得积分20
9秒前
落寞臻发布了新的文献求助10
10秒前
10秒前
Re发布了新的文献求助10
13秒前
13秒前
abc123完成签到,获得积分10
13秒前
XMUZH发布了新的文献求助10
14秒前
16秒前
19秒前
Chunlan完成签到,获得积分10
20秒前
Qsss发布了新的文献求助10
22秒前
饱满烙完成签到 ,获得积分10
24秒前
快快跑咯完成签到,获得积分10
24秒前
尛瞐慶成发布了新的文献求助10
24秒前
不配.应助Re采纳,获得10
25秒前
水若琳完成签到,获得积分10
26秒前
26秒前
27秒前
丘比特应助笨蛋采纳,获得10
29秒前
33秒前
诺诺完成签到,获得积分10
33秒前
11发布了新的文献求助10
34秒前
sdsd发布了新的文献求助10
35秒前
Owen应助树呀采纳,获得10
36秒前
五月节发布了新的文献求助10
37秒前
37秒前
38秒前
七七的小西西完成签到 ,获得积分10
38秒前
luckype完成签到,获得积分20
39秒前
40秒前
活力太阳完成签到,获得积分10
41秒前
大个应助sdsd采纳,获得10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135027
求助须知:如何正确求助?哪些是违规求助? 2785983
关于积分的说明 7774640
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298184
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825