亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable Disease Progression Prediction Based on Reinforcement Reasoning Over a Knowledge Graph

人工智能 计算机科学 机器学习 任务(项目管理) 疾病 图形 强化学习 对象(语法) 随机游动 医学 数学 理论计算机科学 统计 管理 病理 经济
作者
Zhoujian Sun,Wei Dong,Jinlong Shi,Zhengxing Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 1948-1959
标识
DOI:10.1109/tsmc.2023.3331847
摘要

Objective: To combine medical knowledge and medical data to interpretably predict the risk of disease. Methods: We formulated the disease progression prediction task as a random walk along a knowledge graph (KG). Specifically, we build a KG to record relationships between diseases and risk factors according to validated medical knowledge. Then, an object walks along the KG. It starts walking at a patient entity, which connects the KG based on the patient’s current diseases or risk factors and stops at a disease entity representing the predicted disease. The trajectory generated by the object represents an interpretable disease progression path of the given patient. The dynamics of the object are controlled by a policy-based reinforcement learning module, which is trained by electronic health records (EHRs). Experiments: We utilized three real-world EHR datasets to evaluate the performance of our model. In the disease progression prediction task, our model achieves 0.743, 0.639, and 0.643 in terms of macro area under the curve (AUC) in predicting 53 circulation system diseases in the three datasets, respectively. This performance is comparable to medical research’s commonly used machine learning models. In qualitative analysis, our clinical collaborator reviewed the disease progression paths generated by our model and advocated their interpretability and reliability. Conclusion: Experimental results validate the proposed model in interpretably evaluating and optimizing disease progression prediction. Significance: Our work contributes to leveraging the potential of medical knowledge and medical data jointly for interpretable prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助吴茂林采纳,获得10
刚刚
zlk完成签到 ,获得积分10
2秒前
土豆炖大锅完成签到,获得积分10
3秒前
坚强觅珍完成签到 ,获得积分10
4秒前
Juvenilesy完成签到 ,获得积分10
5秒前
学者风范完成签到 ,获得积分10
5秒前
lsl完成签到 ,获得积分10
5秒前
英俊的铭应助YYYhl采纳,获得10
7秒前
魔幻的外套完成签到,获得积分10
7秒前
10秒前
善学以致用应助subat采纳,获得10
11秒前
章鱼完成签到,获得积分10
13秒前
12123浪发布了新的文献求助10
13秒前
15秒前
日常K人完成签到 ,获得积分10
15秒前
Cccsy完成签到,获得积分10
17秒前
20秒前
现代听枫完成签到,获得积分10
20秒前
22秒前
浮游应助吴茂林采纳,获得10
26秒前
subat发布了新的文献求助10
27秒前
33秒前
呀呀呀完成签到 ,获得积分10
34秒前
钟江完成签到,获得积分10
35秒前
科研通AI2S应助27小天使采纳,获得30
35秒前
36秒前
39秒前
40秒前
40秒前
Badada完成签到,获得积分10
43秒前
44秒前
YYYhl发布了新的文献求助10
47秒前
暮色晚钟完成签到,获得积分10
47秒前
吴茂林完成签到,获得积分10
53秒前
倪妮完成签到,获得积分10
57秒前
59秒前
倪妮发布了新的文献求助10
1分钟前
1分钟前
1分钟前
朱志伟发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301672
求助须知:如何正确求助?哪些是违规求助? 4449154
关于积分的说明 13847930
捐赠科研通 4335215
什么是DOI,文献DOI怎么找? 2380208
邀请新用户注册赠送积分活动 1375181
关于科研通互助平台的介绍 1341185