Interpretable Disease Progression Prediction Based on Reinforcement Reasoning Over a Knowledge Graph

人工智能 计算机科学 机器学习 疾病 知识图 图形 自然语言处理 医学 理论计算机科学 内科学
作者
Zhoujian Sun,Wei Dong,Jinlong Shi,Zhengxing Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 1948-1959 被引量:7
标识
DOI:10.1109/tsmc.2023.3331847
摘要

Objective: To combine medical knowledge and medical data to interpretably predict the risk of disease. Methods: We formulated the disease progression prediction task as a random walk along a knowledge graph (KG). Specifically, we build a KG to record relationships between diseases and risk factors according to validated medical knowledge. Then, an object walks along the KG. It starts walking at a patient entity, which connects the KG based on the patient's current diseases or risk factors and stops at a disease entity representing the predicted disease. The trajectory generated by the object represents an interpretable disease progression path of the given patient. The dynamics of the object are controlled by a policy-based reinforcement learning module, which is trained by electronic health records (EHRs). Experiments: We utilized three real-world EHR datasets to evaluate the performance of our model. In the disease progression prediction task, our model achieves 0.743, 0.639, and 0.643 in terms of macro area under the curve (AUC) in predicting 53 circulation system diseases in the three datasets, respectively. This performance is comparable to medical research's commonly used machine learning models. In qualitative analysis, our clinical collaborator reviewed the disease progression paths generated by our model and advocated their interpretability and reliability. Conclusion: Experimental results validate the proposed model in interpretably evaluating and optimizing disease progression prediction. Significance: Our work contributes to leveraging the potential of medical knowledge and medical data jointly for interpretable prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊哈完成签到,获得积分10
1秒前
1秒前
李爱国应助jinze采纳,获得10
1秒前
子午线发布了新的文献求助10
1秒前
2秒前
3秒前
正直的沛凝完成签到,获得积分10
3秒前
烟酒僧完成签到,获得积分10
3秒前
清如完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
西有的裤发布了新的文献求助10
4秒前
doudou发布了新的文献求助10
4秒前
JING完成签到,获得积分10
4秒前
我没钱完成签到 ,获得积分10
4秒前
CipherSage应助麟书夷采纳,获得10
5秒前
5秒前
天天快乐应助xsk861777采纳,获得10
5秒前
1.1发布了新的文献求助10
6秒前
晓汁完成签到,获得积分10
6秒前
qi完成签到,获得积分10
7秒前
jobs发布了新的文献求助20
7秒前
雪sung发布了新的文献求助10
8秒前
Liao完成签到,获得积分10
9秒前
9秒前
WangYZ发布了新的文献求助10
9秒前
9秒前
123完成签到,获得积分10
10秒前
10秒前
斩荆披棘发布了新的文献求助10
10秒前
keke完成签到,获得积分10
10秒前
烟花应助tRNA采纳,获得10
10秒前
shangan关注了科研通微信公众号
10秒前
小人物的坚持完成签到 ,获得积分10
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
满意的颦发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648325
求助须知:如何正确求助?哪些是违规求助? 4775345
关于积分的说明 15043906
捐赠科研通 4807336
什么是DOI,文献DOI怎么找? 2570747
邀请新用户注册赠送积分活动 1527484
关于科研通互助平台的介绍 1486437