Interpretable Disease Progression Prediction Based on Reinforcement Reasoning Over a Knowledge Graph

人工智能 计算机科学 机器学习 疾病 知识图 图形 自然语言处理 医学 理论计算机科学 内科学
作者
Zhoujian Sun,Wei Dong,Jinlong Shi,Zhengxing Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 1948-1959 被引量:7
标识
DOI:10.1109/tsmc.2023.3331847
摘要

Objective: To combine medical knowledge and medical data to interpretably predict the risk of disease. Methods: We formulated the disease progression prediction task as a random walk along a knowledge graph (KG). Specifically, we build a KG to record relationships between diseases and risk factors according to validated medical knowledge. Then, an object walks along the KG. It starts walking at a patient entity, which connects the KG based on the patient's current diseases or risk factors and stops at a disease entity representing the predicted disease. The trajectory generated by the object represents an interpretable disease progression path of the given patient. The dynamics of the object are controlled by a policy-based reinforcement learning module, which is trained by electronic health records (EHRs). Experiments: We utilized three real-world EHR datasets to evaluate the performance of our model. In the disease progression prediction task, our model achieves 0.743, 0.639, and 0.643 in terms of macro area under the curve (AUC) in predicting 53 circulation system diseases in the three datasets, respectively. This performance is comparable to medical research's commonly used machine learning models. In qualitative analysis, our clinical collaborator reviewed the disease progression paths generated by our model and advocated their interpretability and reliability. Conclusion: Experimental results validate the proposed model in interpretably evaluating and optimizing disease progression prediction. Significance: Our work contributes to leveraging the potential of medical knowledge and medical data jointly for interpretable prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
廖喜林完成签到,获得积分10
1秒前
Liu完成签到 ,获得积分10
1秒前
2秒前
搞怪网络完成签到,获得积分10
2秒前
2秒前
YUNI发布了新的文献求助10
3秒前
3秒前
3秒前
虚幻初之发布了新的文献求助10
3秒前
科研通AI6.1应助微微采纳,获得10
4秒前
Meng完成签到,获得积分10
4秒前
4秒前
科研通AI6.1应助子木采纳,获得10
4秒前
MARIO完成签到 ,获得积分10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
书晴完成签到 ,获得积分10
5秒前
Mark应助科研通管家采纳,获得10
5秒前
轨迹应助科研通管家采纳,获得20
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得50
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
清醒完成签到,获得积分20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
我要发sci发布了新的文献求助10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
轨迹应助科研通管家采纳,获得20
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784847
求助须知:如何正确求助?哪些是违规求助? 5684004
关于积分的说明 15465575
捐赠科研通 4913804
什么是DOI,文献DOI怎么找? 2644941
邀请新用户注册赠送积分活动 1592845
关于科研通互助平台的介绍 1547234