Interpretable Disease Progression Prediction Based on Reinforcement Reasoning Over a Knowledge Graph

人工智能 计算机科学 机器学习 疾病 知识图 图形 自然语言处理 医学 理论计算机科学 内科学
作者
Zhoujian Sun,Wei Dong,Jinlong Shi,Zhengxing Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 1948-1959 被引量:7
标识
DOI:10.1109/tsmc.2023.3331847
摘要

Objective: To combine medical knowledge and medical data to interpretably predict the risk of disease. Methods: We formulated the disease progression prediction task as a random walk along a knowledge graph (KG). Specifically, we build a KG to record relationships between diseases and risk factors according to validated medical knowledge. Then, an object walks along the KG. It starts walking at a patient entity, which connects the KG based on the patient's current diseases or risk factors and stops at a disease entity representing the predicted disease. The trajectory generated by the object represents an interpretable disease progression path of the given patient. The dynamics of the object are controlled by a policy-based reinforcement learning module, which is trained by electronic health records (EHRs). Experiments: We utilized three real-world EHR datasets to evaluate the performance of our model. In the disease progression prediction task, our model achieves 0.743, 0.639, and 0.643 in terms of macro area under the curve (AUC) in predicting 53 circulation system diseases in the three datasets, respectively. This performance is comparable to medical research's commonly used machine learning models. In qualitative analysis, our clinical collaborator reviewed the disease progression paths generated by our model and advocated their interpretability and reliability. Conclusion: Experimental results validate the proposed model in interpretably evaluating and optimizing disease progression prediction. Significance: Our work contributes to leveraging the potential of medical knowledge and medical data jointly for interpretable prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小田完成签到 ,获得积分10
1秒前
小蘑菇应助负责雨安采纳,获得10
2秒前
害怕的泥猴桃完成签到,获得积分10
2秒前
科研通AI6.1应助hansku987采纳,获得10
3秒前
科目三应助Don采纳,获得10
4秒前
等待的剑身完成签到,获得积分10
6秒前
秋风暖暖发布了新的文献求助10
7秒前
领导范儿应助于小福采纳,获得10
8秒前
加鱼完成签到,获得积分10
8秒前
8秒前
xwx完成签到,获得积分10
9秒前
SciGPT应助优美紫槐采纳,获得10
9秒前
ZMTW完成签到 ,获得积分10
9秒前
彭于晏应助快乐的寄容采纳,获得10
10秒前
如此这般完成签到 ,获得积分10
10秒前
关关过应助端庄亦巧采纳,获得20
11秒前
关关过应助端庄亦巧采纳,获得20
11秒前
嘻嘻不嘻嘻完成签到 ,获得积分10
11秒前
12秒前
彩色德天完成签到 ,获得积分10
13秒前
州州完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
yiya123完成签到,获得积分10
15秒前
dmq完成签到 ,获得积分10
17秒前
充电宝应助LLLLLLLL采纳,获得10
17秒前
18秒前
我是老大应助健忘灵珊采纳,获得10
20秒前
20秒前
20秒前
CipherSage应助坚强的缘分采纳,获得10
20秒前
gcppa完成签到,获得积分10
20秒前
21秒前
ZCB完成签到,获得积分10
21秒前
22秒前
薄荷完成签到,获得积分10
22秒前
xh完成签到,获得积分10
22秒前
脑洞疼应助小只采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744973
求助须知:如何正确求助?哪些是违规求助? 5423202
关于积分的说明 15351528
捐赠科研通 4885111
什么是DOI,文献DOI怎么找? 2626351
邀请新用户注册赠送积分活动 1575090
关于科研通互助平台的介绍 1531858