已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpretable Disease Progression Prediction Based on Reinforcement Reasoning Over a Knowledge Graph

人工智能 计算机科学 机器学习 疾病 知识图 图形 自然语言处理 医学 理论计算机科学 内科学
作者
Zhoujian Sun,Wei Dong,Jinlong Shi,Zhengxing Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 1948-1959 被引量:7
标识
DOI:10.1109/tsmc.2023.3331847
摘要

Objective: To combine medical knowledge and medical data to interpretably predict the risk of disease. Methods: We formulated the disease progression prediction task as a random walk along a knowledge graph (KG). Specifically, we build a KG to record relationships between diseases and risk factors according to validated medical knowledge. Then, an object walks along the KG. It starts walking at a patient entity, which connects the KG based on the patient's current diseases or risk factors and stops at a disease entity representing the predicted disease. The trajectory generated by the object represents an interpretable disease progression path of the given patient. The dynamics of the object are controlled by a policy-based reinforcement learning module, which is trained by electronic health records (EHRs). Experiments: We utilized three real-world EHR datasets to evaluate the performance of our model. In the disease progression prediction task, our model achieves 0.743, 0.639, and 0.643 in terms of macro area under the curve (AUC) in predicting 53 circulation system diseases in the three datasets, respectively. This performance is comparable to medical research's commonly used machine learning models. In qualitative analysis, our clinical collaborator reviewed the disease progression paths generated by our model and advocated their interpretability and reliability. Conclusion: Experimental results validate the proposed model in interpretably evaluating and optimizing disease progression prediction. Significance: Our work contributes to leveraging the potential of medical knowledge and medical data jointly for interpretable prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Bonaventure采纳,获得10
刚刚
Atlantic完成签到,获得积分10
刚刚
刚刚
快乐吗猪发布了新的文献求助10
2秒前
2秒前
2秒前
星辰大海应助清爽冬莲采纳,获得10
4秒前
5秒前
llj关闭了llj文献求助
6秒前
争争向荣发布了新的文献求助50
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
猫橘汽水完成签到,获得积分10
10秒前
可爱的函函应助青羽采纳,获得10
11秒前
李健发布了新的文献求助10
11秒前
痴情的白易完成签到 ,获得积分10
11秒前
朴实子骞完成签到 ,获得积分10
13秒前
大马哈鱼发布了新的文献求助10
15秒前
18秒前
脑洞疼应助刘畅采纳,获得10
18秒前
绿波电龙完成签到,获得积分10
18秒前
19秒前
19秒前
Wendell发布了新的文献求助10
20秒前
wanci应助典雅的俊驰采纳,获得10
20秒前
pjjpk01完成签到,获得积分10
21秒前
23秒前
小二郎应助不狗不吹采纳,获得10
23秒前
QYQ完成签到 ,获得积分10
23秒前
科研通AI6.1应助淡淡梦容采纳,获得10
25秒前
清爽冬莲发布了新的文献求助10
25秒前
25秒前
26秒前
27秒前
桐桐应助代沁采纳,获得30
27秒前
小饼干干发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779123
求助须知:如何正确求助?哪些是违规求助? 5645950
关于积分的说明 15451285
捐赠科研通 4910582
什么是DOI,文献DOI怎么找? 2642743
邀请新用户注册赠送积分活动 1590446
关于科研通互助平台的介绍 1544810