Interpretable Disease Progression Prediction Based on Reinforcement Reasoning Over a Knowledge Graph

人工智能 计算机科学 机器学习 任务(项目管理) 疾病 图形 强化学习 对象(语法) 随机游动 医学 数学 理论计算机科学 统计 病理 经济 管理
作者
Zhoujian Sun,Wei Dong,Jinlong Shi,Zhengxing Huang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 1948-1959
标识
DOI:10.1109/tsmc.2023.3331847
摘要

Objective: To combine medical knowledge and medical data to interpretably predict the risk of disease. Methods: We formulated the disease progression prediction task as a random walk along a knowledge graph (KG). Specifically, we build a KG to record relationships between diseases and risk factors according to validated medical knowledge. Then, an object walks along the KG. It starts walking at a patient entity, which connects the KG based on the patient’s current diseases or risk factors and stops at a disease entity representing the predicted disease. The trajectory generated by the object represents an interpretable disease progression path of the given patient. The dynamics of the object are controlled by a policy-based reinforcement learning module, which is trained by electronic health records (EHRs). Experiments: We utilized three real-world EHR datasets to evaluate the performance of our model. In the disease progression prediction task, our model achieves 0.743, 0.639, and 0.643 in terms of macro area under the curve (AUC) in predicting 53 circulation system diseases in the three datasets, respectively. This performance is comparable to medical research’s commonly used machine learning models. In qualitative analysis, our clinical collaborator reviewed the disease progression paths generated by our model and advocated their interpretability and reliability. Conclusion: Experimental results validate the proposed model in interpretably evaluating and optimizing disease progression prediction. Significance: Our work contributes to leveraging the potential of medical knowledge and medical data jointly for interpretable prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
an完成签到,获得积分10
1秒前
蜂蜜柚子完成签到,获得积分10
2秒前
Sk完成签到,获得积分20
2秒前
2秒前
3秒前
hkh发布了新的文献求助10
4秒前
波比冰苏打完成签到,获得积分10
4秒前
5秒前
feiying88发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
He完成签到 ,获得积分10
8秒前
泉水发布了新的文献求助50
10秒前
10秒前
Ecokarster应助Ever采纳,获得10
11秒前
11秒前
juls发布了新的文献求助10
12秒前
李健的粉丝团团长应助Mine采纳,获得30
13秒前
bkagyin应助陈杭鑫采纳,获得10
13秒前
杏林靴子发布了新的文献求助10
13秒前
呀呀呀发布了新的文献求助10
13秒前
13秒前
火山蜗牛发布了新的文献求助10
14秒前
李笑发布了新的文献求助10
15秒前
Alex发布了新的文献求助10
17秒前
Jasper应助文献进入大脑采纳,获得10
17秒前
yang发布了新的文献求助10
17秒前
刘子完成签到,获得积分10
18秒前
18秒前
19秒前
刘强东完成签到,获得积分20
19秒前
19秒前
19秒前
城南花已开完成签到,获得积分20
19秒前
20秒前
20秒前
会撒娇的书白完成签到 ,获得积分10
21秒前
时尚的念云完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992928
求助须知:如何正确求助?哪些是违规求助? 3533703
关于积分的说明 11263585
捐赠科研通 3273517
什么是DOI,文献DOI怎么找? 1806067
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629