DeepPuff: Utilizing Deep Learning for Smoking Behavior Identification in Free-living Environment

烟雾 深度学习 香烟烟雾 计算机科学 假阳性悖论 呼吸 暴露持续时间 人工智能 医学 环境卫生 麻醉 工程类 废物管理
作者
Prajakta Belsare,Volkan Senyurek,Masudul H. Imtiaz,Stephen T. Tiffany,Edward Sazonov
标识
DOI:10.1109/embc40787.2023.10340528
摘要

A comprehensive assessment of cigarette smoking behavior and its effect on health requires a detailed examination of smoke exposure. We propose a CNN-LSTM-based deep learning architecture named DeepPuff to quantify Respiratory Smoke Exposure Metrics (RSEM). Smoke inhalations were detected from the breathing and hand gesture sensors of the Personal Automatic Cigarette Tracker v2 (PACT 2.0). The DeepPuff model for smoke inhalation detection was developed using data collected from 190 cigarette smoking events from 38 medium to heavy smokers and optimized for precision (avoidance of false positives). An independent dataset of 459 smoking events from 45 participants (90 smoking events in the lab and 369 smoking events in free-living conditions) was used for testing the model. The proposed model achieved a precision of 82.39% on the training and 93.80% on the testing dataset (95.88% in the lab and 93.78% in free-living). RSEM metrics were then computed from the breathing signal of each detected smoke inhalation. Results from the RSEM algorithm were compared with respiratory metrics obtained from video annotation. Smoke exposure metrics of puff duration, inhale-exhale duration, and inhalation duration were not statistically different from the ground truth generated through video annotation. The results suggest that DeepPuff may be used as a reliable means to measure respiratory smoke exposure metrics collected under free-living conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称发布了新的文献求助10
1秒前
小二郎应助在查找采纳,获得10
2秒前
Tigher发布了新的文献求助10
3秒前
畅快慕蕊完成签到,获得积分10
3秒前
Hanaooooo完成签到,获得积分10
4秒前
zz发布了新的文献求助10
4秒前
5秒前
5秒前
Jasper应助栗子栗栗子采纳,获得10
5秒前
852应助糊涂的凡采纳,获得10
6秒前
搞快点完成签到,获得积分10
6秒前
田様应助伶俐的不尤采纳,获得10
7秒前
大力兔子发布了新的文献求助10
7秒前
Alexbirchurros完成签到 ,获得积分10
7秒前
8秒前
小潘不潘完成签到,获得积分10
8秒前
9秒前
我是站长才怪应助啊呜采纳,获得10
11秒前
n烨完成签到,获得积分10
11秒前
研友_nVqwxL完成签到,获得积分10
12秒前
13秒前
刘刘刘完成签到 ,获得积分10
13秒前
14秒前
九千七发布了新的文献求助10
14秒前
tang发布了新的文献求助10
15秒前
yile完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
维生素CCC完成签到 ,获得积分10
16秒前
17秒前
所所应助小强123采纳,获得10
17秒前
天真蓝完成签到,获得积分10
17秒前
天真千易发布了新的文献求助30
18秒前
19秒前
左丘忻完成签到,获得积分10
19秒前
jonghuang发布了新的文献求助10
19秒前
19秒前
无敌最俊朗应助luoshikun采纳,获得150
19秒前
JamesPei应助luoshikun采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312794
求助须知:如何正确求助?哪些是违规求助? 2945217
关于积分的说明 8523802
捐赠科研通 2621000
什么是DOI,文献DOI怎么找? 1433267
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650271