DMA: Dual Modality-Aware Alignment for Visible-Infrared Person Re-Identification

计算机科学 判别式 模态(人机交互) 人工智能 计算机视觉 模式识别(心理学) 水准点(测量) 色空间 红外线的 图像(数学) 光学 大地测量学 地理 物理
作者
Zhenyu Cui,Jiahuan Zhou,Yuxin Peng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2696-2708 被引量:4
标识
DOI:10.1109/tifs.2024.3352408
摘要

Visible-infrared person re-identification (VI-ReID) aims to identify the same person across visible and infrared images. Its main challenge is how to extract modality-irrelevant person identity information. To alleviate cross-modality discrepancies, existing methods typically follow two paradigms: 1) Transform visible images into gray-scale color space and map them into the infrared domain. 2) Stack infrared images into RGB color space and map them into the visible domain. However, limited by different optical properties of visible and infrared waves, such mapping commonly leads to information asymmetry. Although some efforts prevent such discrepancies by data-level alignment, they typically meanwhile introduce misleading information and bring extra divergence. Therefore, existing methods fail on effectively eliminating the modality discrepancies. In this paper, we first analyze the essential factors to the generation of modality discrepancies. Secondly, we propose a novel Dual Modality-aware Alignment (DMA) model for VI-ReID, which can preserve discriminative identity information and suppress the misleading information within a uniform scheme. Particularly, based on the intrinsic optical properties of both modalities, a Dual Modality Transfer (DMT) module is proposed to perform compensation for the information asymmetry in HSV color space, thereby effectively alleviating cross-modality discrepancies and better preserving discriminative identity features. Further, an Intra-local Alignment (IA) module is proposed to suppress the misleading information, where a fine-grained local consistency objective function is designed to achieve more compact intra-class representations. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our method and competitive performance with state-of-the-art methods. The source code of this paper is available at https://github.com/PKU-ICST-MIPL/DMA_TIFS2023 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青山完成签到 ,获得积分10
1秒前
陈俊雷完成签到 ,获得积分10
1秒前
tfsn20完成签到,获得积分0
1秒前
激情的含巧完成签到,获得积分10
3秒前
郑思榆完成签到 ,获得积分10
4秒前
fufufu123完成签到 ,获得积分10
4秒前
天明完成签到,获得积分10
5秒前
guishouyu完成签到,获得积分10
5秒前
339564965完成签到,获得积分10
5秒前
ccc完成签到,获得积分10
7秒前
浅浅殇完成签到,获得积分10
7秒前
甜甜秋荷完成签到,获得积分10
10秒前
只想顺利毕业的科研狗完成签到,获得积分10
11秒前
花阳年华完成签到 ,获得积分10
11秒前
dy完成签到,获得积分10
11秒前
风中的老九完成签到,获得积分0
12秒前
xueshidaheng完成签到,获得积分10
12秒前
Helios完成签到,获得积分10
12秒前
风信子完成签到,获得积分10
13秒前
maxyer完成签到,获得积分10
13秒前
科研菜鸟完成签到 ,获得积分10
13秒前
tong童完成签到 ,获得积分10
14秒前
桥豆麻袋完成签到,获得积分10
14秒前
BK_201完成签到,获得积分10
15秒前
能干戒指完成签到,获得积分10
15秒前
舟行碧波上完成签到,获得积分10
16秒前
木康薛完成签到,获得积分10
16秒前
abiorz完成签到,获得积分10
16秒前
鹏举瞰冷雨完成签到,获得积分10
16秒前
cghsf完成签到,获得积分10
17秒前
窗外是蔚蓝色完成签到,获得积分10
17秒前
小刘爱读文献完成签到 ,获得积分10
17秒前
Brief完成签到,获得积分10
17秒前
nanostu完成签到,获得积分10
17秒前
雪白的千雁完成签到 ,获得积分20
18秒前
Jason完成签到 ,获得积分10
18秒前
儒雅的若翠完成签到,获得积分10
19秒前
水星完成签到 ,获得积分10
20秒前
cicy完成签到,获得积分10
21秒前
21秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471561
求助须知:如何正确求助?哪些是违规求助? 3064546
关于积分的说明 9088499
捐赠科研通 2755225
什么是DOI,文献DOI怎么找? 1511878
邀请新用户注册赠送积分活动 698589
科研通“疑难数据库(出版商)”最低求助积分说明 698473