Oriented BN/BNNT heterostructure constructed by interface engineering strategy for polyamide-imide composite film with advanced flexibility and thermally conductive properties

材料科学 复合数 热导率 氮化硼 复合材料 导电体
作者
Shuaishuai Zhou,Tongle Xu,Na Song,Jingjie Dai,Qian Gao,Peng Ding
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148653-148653 被引量:10
标识
DOI:10.1016/j.cej.2024.148653
摘要

Thermal conductive polymeric materials have aroused increasing attention as thermal management materials in the field of intelligent electronic devices due to their intriguing advantages. However, the discontinuity of phonon transmission path construction represents the bottleneck for thermal conductivity enhancement of composite materials, which limits the practical application of composite materials. Herein, flexible polyamide-imide (PAI) thermally conductive composite films with hierarchical structure composed of synergistically assembled functionalized boron nitride nanosheets (FBN) and polydopamine (PDA)-modified boron nitride nanotubes (FBT) by layer-by-layer assembly strategy are constructed. Benefitting from the optimized interface engineering with the ordered oriented arrangement FBN/FBT filler structure, the obtained composite film with optimized hybrid filler contents exhibits the super high thermal conductivity of 71.1 W·m−1·K−1, prominent thermal conductivity enhancement as high as 3663 % and excellent mechanical flexibility. The introduction of FBT can further expand the thermal contact area attributed to its inherent high thermal conductivity and aspect ratio. Additionally, the consecutive dual-channel phono transmission paths can be constructed in PAI composites under the synergistic action of FBN and FBT, further improving the phonon transmission density and suppressing phonon scattering, which endows PAI composite films with excellent thermal conductivity under low load of filler. The resulting multifunctionalities make the PAI composite films promising for flexible intelligent wearable electronic devices as thermal management materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良陈美景奈何天完成签到 ,获得积分10
刚刚
是赵先森呀完成签到 ,获得积分10
刚刚
蜘蛛侠发布了新的文献求助10
刚刚
共享精神应助Simone采纳,获得10
1秒前
1秒前
开朗白开水完成签到 ,获得积分10
1秒前
super chan发布了新的文献求助10
2秒前
2秒前
z今晚吃哥斯拉1关注了科研通微信公众号
3秒前
3秒前
3秒前
LL发布了新的文献求助10
4秒前
hugeng完成签到,获得积分10
4秒前
钱塘郎中完成签到,获得积分0
4秒前
xiaojin完成签到,获得积分10
4秒前
牛牛牛完成签到,获得积分10
6秒前
wanci应助lucifer0922采纳,获得20
6秒前
古的古的发布了新的文献求助20
6秒前
hugeng发布了新的文献求助10
7秒前
端庄不愁发布了新的文献求助10
7秒前
zhangfuchao发布了新的文献求助10
8秒前
叶子小丙应助六一采纳,获得10
9秒前
Pumpkin完成签到,获得积分10
9秒前
发财的Mei完成签到 ,获得积分10
9秒前
柔弱吉利蛋完成签到,获得积分10
10秒前
10秒前
10秒前
深情安青应助真实的一鸣采纳,获得10
11秒前
一定按时睡觉完成签到 ,获得积分10
11秒前
11秒前
haokeyan完成签到,获得积分10
13秒前
14秒前
MIKUKU发布了新的文献求助10
14秒前
认真金鱼发布了新的文献求助10
14秒前
今后应助zhangfuchao采纳,获得10
15秒前
学习猴发布了新的文献求助10
15秒前
顺利毕业发布了新的文献求助20
16秒前
方赫然完成签到,获得积分0
18秒前
flymove发布了新的文献求助10
18秒前
科研民工完成签到,获得积分20
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311924
求助须知:如何正确求助?哪些是违规求助? 2944704
关于积分的说明 8520803
捐赠科研通 2620313
什么是DOI,文献DOI怎么找? 1432777
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650077