Convolutional Neural Network Approach for Vibration-Based Damage State Prediction in a Reinforced Concrete Building

加速度 振动 结构工程 卷积神经网络 噪音(视频) 流离失所(心理学) 计算机科学 基础(拓扑) 结构健康监测 工程类 声学 人工智能 数学 物理 数学分析 经典力学 图像(数学) 心理治疗师 心理学
作者
Michael Whiteman,Claudia Marin-Artieda,Jale Tezcan
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:38 (2) 被引量:1
标识
DOI:10.1061/jccee5.cpeng-5511
摘要

Structural health monitoring (SHM) is critical in identifying the degradation of infrastructure systems to ensure structural integrity and safety. Vibration-based SHM approaches, including numerical-physics-based modeling and data-driven strategies, are commonly used to detect damage. This study proposes a method for predicting damage conditions using a hybrid vibration-based approach with convolutional neural networks (CNNs) trained with physics-based data sets. The method is evaluated using a five-story reinforced concrete building that undergoes multiple base excitations, resulting in cumulative damage that affects the building's stiffness and dynamic responses. A set of damage states is defined based on the structure's response, and simplified models of the building are used to create a training database for the CNNs. The CNNs are trained on noise-free dynamic responses (i.e., accelerations or displacements) from numerically simulated white noise (WN) sequences and then tested with the appropriate floor response data from different types of base shaking. The accuracy of the models is consistently high, with noise-free acceleration and displacement responses yielding results of 99.9% and 93.9% for numerically simulated WN base excitations, respectively. The accuracy remained high when tested with 30 dB signal-to-noise ratio (SNR) noisy acceleration and displacement responses, with accuracies of 99.9% and 93.8%, respectively, and 100% when using acceleration responses from experimentally measured WN base excitations with a similar SNR. Ambient microtremor acceleration data collected within California's Central Valley were used to validate the approach for low-amplitude ambient ground vibrations, achieving an accuracy of 86.69% when tested with noisy acceleration responses with the measured microtremors as base shaking. The proposed method has limitations in identifying bordering damage states and reduced accuracy when tested on field data, but overall shows promise for damage state identification and story stiffness reduction analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风中冷风完成签到,获得积分10
1秒前
1秒前
1秒前
weimin应助米味锅巴采纳,获得10
1秒前
李梦琦发布了新的文献求助10
2秒前
科研通AI2S应助淡定思枫采纳,获得10
2秒前
minikk完成签到,获得积分10
2秒前
RiliT完成签到 ,获得积分10
2秒前
3秒前
WantoXi完成签到,获得积分10
3秒前
山长子完成签到,获得积分10
4秒前
酷波er应助明天就交稿采纳,获得10
4秒前
传奇3应助0384p采纳,获得10
5秒前
多米发布了新的文献求助10
5秒前
逆熵完成签到,获得积分10
6秒前
风雨发布了新的文献求助10
6秒前
万能图书馆应助麦冬冬采纳,获得10
6秒前
羡鱼完成签到,获得积分10
6秒前
hua完成签到,获得积分10
7秒前
kim发布了新的文献求助10
7秒前
华仔应助aaa采纳,获得10
7秒前
帅气的猫猫应助李梦琦采纳,获得30
8秒前
科研通AI5应助李梦琦采纳,获得10
8秒前
上官若男应助我不看月亮采纳,获得10
8秒前
8秒前
段yy完成签到,获得积分10
9秒前
fighting完成签到 ,获得积分10
10秒前
10秒前
10秒前
GGbong完成签到 ,获得积分10
11秒前
Gong完成签到,获得积分10
11秒前
柴柴完成签到,获得积分10
11秒前
xx完成签到,获得积分10
11秒前
琉璃岁月完成签到,获得积分10
13秒前
孔难破完成签到,获得积分10
13秒前
Schroenius完成签到 ,获得积分10
13秒前
14秒前
15秒前
11完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556601
求助须知:如何正确求助?哪些是违规求助? 3132165
关于积分的说明 9395129
捐赠科研通 2832233
什么是DOI,文献DOI怎么找? 1556699
邀请新用户注册赠送积分活动 726852
科研通“疑难数据库(出版商)”最低求助积分说明 716107