Graphormer-IR: Graph Transformers Predict Experimental IR Spectra Using Highly Specialized Attention

计算机科学 平滑的 谱线 人工神经网络 缩放比例 红外光谱学 模式识别(心理学) 人工智能 算法 化学 物理 数学 几何学 计算机视觉 有机化学 天文
作者
Cailum M. K. Stienstra,Liam Hebert,P. Thomas,Alexander Haack,Jason Guo,W. Scott Hopkins
标识
DOI:10.26434/chemrxiv-2023-f38b5-v2
摘要

Given that Infrared (IR) spectroscopy is a crucial tool in various chemical and forensic domains, improved in silico methods for predicting experimental spectra are needed due to the time and accuracy limitations of ab initio methods. We employ Graphormer, a graph neural network (GNN) transformer, to predict IR spectra using only Simplified Molecular-Input Line-Entry System (SMILES) strings. Our dataset includes 53,528 high-quality spectra with elements H, C, N, O, F, Si, S, P, Cl, Br, and I in five phases. When using only atomic numbers for node encodings, Graphormer-IR achieved mean test Spectral Information Similarity (SIS_μ) of 0.8449±0.0012 (n=5), surpassing the state-of-the-art Chemprop-IR (SIS_μ = 0.8409 ± 0.0014, n=5), with only 36% of the encoded information. Augmenting node embeddings with additional node-level descriptors in learned embeddings generated through a multi-layer perceptron improves scores to SIS_μ = 0.8523±0.0006, a total improvement of 19.7σ. These improved scores show how Graphormer-IR excels in capturing long-range interactions like hydrogen bonding, anharmonic peak positions in experimental spectra, and stretching frequencies of uncommon functional groups. Scaling our architecture to 210 attention heads demonstrates specialist-like behavior for distinct IR frequencies that improves model performance. Our model utilizes novel architectures, including a global node for phase encoding, learned node feature embeddings, and a 1D smoothing CNN. Graphormer-IR’s innovations underscore its value over traditional message-passing neural networks (MPNNs) due to its expressive embeddings and ability to capture long-range intra-molecular relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十八完成签到,获得积分10
1秒前
1秒前
2秒前
大模型应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
SHAO应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
1213应助科研通管家采纳,获得20
3秒前
华仔应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
yyf关闭了yyf文献求助
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
kecheng应助科研通管家采纳,获得20
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
FashionBoy应助自信的冬日采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
SHAO应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
木心应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
完美世界应助joejo1124采纳,获得50
4秒前
renheit应助科研通管家采纳,获得50
4秒前
桃子应助科研通管家采纳,获得10
4秒前
4秒前
kecheng应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425