Preferences for the decision weight and accountability assignment in risky decision-making under human-machine collaboration contexts

问责 偏爱 计算机科学 心理学 人工智能 机器学习 社会心理学 公共关系 知识管理 经济 政治学 微观经济学 法学
作者
Wei Xiong,Liuxing Tsao,Liang Ma
出处
期刊:AHFE international
标识
DOI:10.54941/ahfe1004518
摘要

Collaboration between humans and machines has demonstrated considerable potential. In the future, we can assume that humans and machines will collaborate in partnerships and sharing decision outcomes. This prompts us to examine the extent to which machine inputs are introduced and to clarify the accountability for both positive and negative outcomes. We conducted a questionnaire survey through social networks, collecting 123 valid responses. Respondents were tasked with imagining a collaborative scenario with an intelligent machine for a risky decision-making task. We compared decision weights and accountability assignments for decision outcomes (profit and/or loss) under different risky decision-making descriptions. We also analyzed accountability assignments under a range of human-machine partnerships with given decision weights. Our results revealed the preference of humans to take the lead in human-machine partnerships and they were willing to assume more accountability. We also observed significant differences between decision weight and the assignment of accountability for decision outcomes. Interestingly, a gender-based analysis indicated that women tended to favor higher decision weight in scenarios involving loss-sharing descriptions and were more likely to assume more accountability for negative outcomes. Furthermore, under given human-machine decision weights, both men and women participants took more accountability for profits than for losses. In particular, women compared to their male counterparts, tended to attribute significantly more accountability to themselves for losses. This study would facilitate work designs for human-machine teams and contribute to fostering better human-machine relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzx完成签到,获得积分20
1秒前
勤劳的沛山完成签到 ,获得积分10
1秒前
1秒前
2秒前
3秒前
gavin1110发布了新的文献求助10
5秒前
Akim应助lzx采纳,获得10
6秒前
研友_rLmNXn发布了新的文献求助10
6秒前
陈曦发布了新的文献求助10
7秒前
7秒前
研友_ZG4Bl8完成签到,获得积分10
7秒前
小姚姚完成签到,获得积分10
8秒前
Rondab应助称心的菲鹰采纳,获得10
8秒前
诚心谷南发布了新的文献求助10
8秒前
CodeCraft应助李十七采纳,获得10
9秒前
JamesPei应助研友_rLmNXn采纳,获得10
9秒前
shimly0101xx发布了新的文献求助10
11秒前
JWKim完成签到,获得积分10
16秒前
17秒前
20秒前
像只猫发布了新的文献求助10
23秒前
shimly0101xx发布了新的文献求助10
24秒前
希兮九条叶完成签到,获得积分10
25秒前
26秒前
29秒前
小马甲应助乌禅采纳,获得10
31秒前
31秒前
aldehyde应助科研通管家采纳,获得10
32秒前
py应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
wanci应助科研通管家采纳,获得10
32秒前
aldehyde应助科研通管家采纳,获得10
32秒前
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
赘婿应助科研通管家采纳,获得10
33秒前
脑洞疼应助科研通管家采纳,获得10
33秒前
柯一一应助科研通管家采纳,获得10
33秒前
Owen应助科研通管家采纳,获得10
33秒前
Jasper应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176