已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Preferences for the decision weight and accountability assignment in risky decision-making under human-machine collaboration contexts

问责 偏爱 计算机科学 心理学 人工智能 机器学习 社会心理学 公共关系 知识管理 经济 政治学 微观经济学 法学
作者
Wei Xiong,Liuxing Tsao,Liang Ma
出处
期刊:AHFE international
标识
DOI:10.54941/ahfe1004518
摘要

Collaboration between humans and machines has demonstrated considerable potential. In the future, we can assume that humans and machines will collaborate in partnerships and sharing decision outcomes. This prompts us to examine the extent to which machine inputs are introduced and to clarify the accountability for both positive and negative outcomes. We conducted a questionnaire survey through social networks, collecting 123 valid responses. Respondents were tasked with imagining a collaborative scenario with an intelligent machine for a risky decision-making task. We compared decision weights and accountability assignments for decision outcomes (profit and/or loss) under different risky decision-making descriptions. We also analyzed accountability assignments under a range of human-machine partnerships with given decision weights. Our results revealed the preference of humans to take the lead in human-machine partnerships and they were willing to assume more accountability. We also observed significant differences between decision weight and the assignment of accountability for decision outcomes. Interestingly, a gender-based analysis indicated that women tended to favor higher decision weight in scenarios involving loss-sharing descriptions and were more likely to assume more accountability for negative outcomes. Furthermore, under given human-machine decision weights, both men and women participants took more accountability for profits than for losses. In particular, women compared to their male counterparts, tended to attribute significantly more accountability to themselves for losses. This study would facilitate work designs for human-machine teams and contribute to fostering better human-machine relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助超级的代柔采纳,获得10
1秒前
小仙虎殿下完成签到 ,获得积分10
2秒前
调皮千兰发布了新的文献求助10
2秒前
可爱的函函应助酚酞v采纳,获得10
7秒前
赘婿应助牛犊采纳,获得10
9秒前
Wednesday Chong完成签到 ,获得积分10
12秒前
bkagyin应助thousandlong采纳,获得10
12秒前
13秒前
14秒前
14秒前
清爽的天晴完成签到,获得积分10
17秒前
灰灰完成签到 ,获得积分10
17秒前
稳重母鸡完成签到 ,获得积分10
18秒前
超级的代柔完成签到,获得积分10
19秒前
19秒前
牛犊发布了新的文献求助10
20秒前
21秒前
kubi发布了新的文献求助10
22秒前
23秒前
thousandlong发布了新的文献求助10
27秒前
xiaoran发布了新的文献求助10
29秒前
34秒前
WerWu完成签到,获得积分10
36秒前
在水一方应助bosslin采纳,获得10
37秒前
神无发布了新的文献求助10
41秒前
43秒前
44秒前
44秒前
于清绝完成签到 ,获得积分10
44秒前
Sprinkle发布了新的文献求助10
47秒前
斯文败类应助系系采纳,获得10
47秒前
难搞哦发布了新的文献求助10
48秒前
48秒前
veeinne发布了新的文献求助10
49秒前
潘善若发布了新的文献求助10
52秒前
53秒前
Sprinkle完成签到,获得积分10
58秒前
潘善若完成签到,获得积分10
58秒前
1分钟前
小星星完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125979
求助须知:如何正确求助?哪些是违规求助? 2776237
关于积分的说明 7729511
捐赠科研通 2431621
什么是DOI,文献DOI怎么找? 1292180
科研通“疑难数据库(出版商)”最低求助积分说明 622582
版权声明 600392