Air pollution prediction and backcasting through a combination of mobile monitoring and historical on-road traffic emission inventories

回溯 环境科学 空气污染 污染 航程(航空) 气象学 自然地理学 地理 生态学 持续性 生物 复合材料 有机化学 化学 材料科学
作者
Arman Ganji,Milad Saeedi,Marshall Lloyd,Junshi Xu,Scott Weichenthal,Marianne Hatzopoulou
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:915: 170075-170075 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.170075
摘要

An important challenge for studies of air pollution and health effects is the derivation of historical exposures. These generally entail some form of backcasting, which refers to a range of approaches that aim to project a current surface into the past. Accurate backcasting is conditional upon the availability of historical data for predictor variables and the ability to capture spatial and temporal trends in these variables. This study proposes a method to backcast traffic-related air pollution surfaces developed using land-use regression models by including temporal variability of traffic and emissions and trends in concentrations measured at reference stations. Nitrogen dioxide (NO2) concentrations collected in the City of Toronto using the Urban Scanner mobile platform were adjusted for historical trends captured at reference stations. The Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST), a powerful tool for time series decomposition, was employed to isolate seasonal variations, annual trends, and abrupt changes in NO2 at reference stations, hence decomposing the signal. Exposure surfaces were generated for a period extending from 2006 to 2020, exhibiting decreases ranging from 10 to 50 % depending on the neighborhood, with an average of 20.46 % across the city. Yearly surfaces were intersected with mobility patterns of Torontonians extracted from travel survey data for 2006 and 2016, illustrating strong spatial gradients in the evolution of NO2 over time, with larger decreases along major roads and highways and in the central core. These findings demonstrate that air pollution improvements throughout the 14 years are inhomogeneous across space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色岂愈发布了新的文献求助10
1秒前
1秒前
多情晓曼完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
Zhao发布了新的文献求助10
2秒前
机智雅阳发布了新的文献求助10
2秒前
3秒前
tianjiu发布了新的文献求助10
3秒前
谢惠茹发布了新的文献求助10
3秒前
4秒前
理理完成签到 ,获得积分10
4秒前
落后的哈密瓜完成签到,获得积分10
4秒前
解惑大师发布了新的文献求助10
4秒前
PaoPao完成签到,获得积分10
4秒前
5秒前
涛zt应助叶坊采纳,获得10
5秒前
6秒前
ppsweek发布了新的文献求助10
6秒前
MM11111发布了新的文献求助10
6秒前
xixi发布了新的文献求助10
7秒前
拼搏草莓发布了新的文献求助10
7秒前
8秒前
今后应助matty采纳,获得10
8秒前
闪闪烨华发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
9秒前
ilihe应助xh采纳,获得10
9秒前
zlllllll发布了新的文献求助10
10秒前
阳阳发布了新的文献求助10
10秒前
10秒前
佛蒙特完成签到,获得积分10
10秒前
张婷完成签到,获得积分10
11秒前
11秒前
dadawang发布了新的文献求助10
11秒前
清爽博超完成签到,获得积分20
11秒前
科研通AI6.1应助lsn采纳,获得10
11秒前
Criminology34应助zzzqqq采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774251
求助须知:如何正确求助?哪些是违规求助? 5616574
关于积分的说明 15435095
捐赠科研通 4906776
什么是DOI,文献DOI怎么找? 2640385
邀请新用户注册赠送积分活动 1588179
关于科研通互助平台的介绍 1543225