Air pollution prediction and backcasting through a combination of mobile monitoring and historical on-road traffic emission inventories

回溯 环境科学 空气污染 污染 航程(航空) 气象学 自然地理学 地理 生态学 材料科学 有机化学 持续性 复合材料 生物 化学
作者
Arman Ganji,Milad Saeedi,Marshall Lloyd,Junshi Xu,Scott Weichenthal,Marianne Hatzopoulou
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:915: 170075-170075 被引量:1
标识
DOI:10.1016/j.scitotenv.2024.170075
摘要

An important challenge for studies of air pollution and health effects is the derivation of historical exposures. These generally entail some form of backcasting, which refers to a range of approaches that aim to project a current surface into the past. Accurate backcasting is conditional upon the availability of historical data for predictor variables and the ability to capture spatial and temporal trends in these variables. This study proposes a method to backcast traffic-related air pollution surfaces developed using land-use regression models by including temporal variability of traffic and emissions and trends in concentrations measured at reference stations. Nitrogen dioxide (NO2) concentrations collected in the City of Toronto using the Urban Scanner mobile platform were adjusted for historical trends captured at reference stations. The Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST), a powerful tool for time series decomposition, was employed to isolate seasonal variations, annual trends, and abrupt changes in NO2 at reference stations, hence decomposing the signal. Exposure surfaces were generated for a period extending from 2006 to 2020, exhibiting decreases ranging from 10 to 50 % depending on the neighborhood, with an average of 20.46 % across the city. Yearly surfaces were intersected with mobility patterns of Torontonians extracted from travel survey data for 2006 and 2016, illustrating strong spatial gradients in the evolution of NO2 over time, with larger decreases along major roads and highways and in the central core. These findings demonstrate that air pollution improvements throughout the 14 years are inhomogeneous across space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
对照完成签到 ,获得积分10
刚刚
FashionBoy应助Bella采纳,获得30
1秒前
1秒前
雷电将军发布了新的文献求助10
2秒前
爆米花应助Sun1c7采纳,获得10
2秒前
shirly完成签到,获得积分10
2秒前
菜菜Cc发布了新的文献求助10
2秒前
逸晨发布了新的文献求助10
3秒前
丘比特应助JQB采纳,获得10
3秒前
慕青应助素和姣姣采纳,获得10
4秒前
舒适静丹发布了新的文献求助10
4秒前
wangayting发布了新的文献求助10
4秒前
我是老大应助端庄的正豪采纳,获得10
4秒前
香蕉冬云完成签到 ,获得积分10
5秒前
乐乐应助叫啥不吃饭采纳,获得10
5秒前
6秒前
哈哈发布了新的文献求助10
6秒前
单手开坦克完成签到,获得积分10
7秒前
完美世界应助认真学习采纳,获得10
8秒前
小脑斧完成签到,获得积分10
8秒前
丘比特应助Meiyu采纳,获得10
9秒前
帽帽完成签到 ,获得积分10
10秒前
dawnn完成签到,获得积分10
10秒前
Fa完成签到,获得积分10
11秒前
11秒前
阳光的静白完成签到,获得积分10
11秒前
正直帆布鞋完成签到,获得积分10
11秒前
华仔应助外向语山采纳,获得10
12秒前
12秒前
wang完成签到,获得积分10
12秒前
12秒前
李健的粉丝团团长应助Kz采纳,获得10
13秒前
隐形曼青应助木草采纳,获得10
13秒前
13秒前
我是老大应助nj采纳,获得10
13秒前
13秒前
shin0324发布了新的文献求助10
14秒前
小二郎应助逸晨采纳,获得10
15秒前
李健的小迷弟应助小七采纳,获得10
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143897
求助须知:如何正确求助?哪些是违规求助? 2795508
关于积分的说明 7815487
捐赠科研通 2451567
什么是DOI,文献DOI怎么找? 1304518
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419