真菌
有害生物分析
生物
松节油
病菌
植物
生态学
微生物学
化学
有机化学
作者
Yuting Zhou,Siwei Guo,Tao Wang,Shixiang Zong,Xuezhen Ge
摘要
Abstract BACKGROUND Dendroctonus valens along with its symbiotic fungi have caused unprecedented damage to pines in China. Leptographium procerum , its primary symbiotic fungus, facilitates the invasion and colonization of the pest, thereby aggravating ecological threats. Assessing shifts in the niches and ranges of D. valens and its symbiotic fungus could provide a valuable basis for pest control. Here, we conducted niche comparisons between native and invasive populations of D. valens . Then, we employed standard ecological niche models and ensembles of small models to predict the potential distributions of D. valens and L. procerum under climate change conditions and to estimate areas of overlap. RESULTS The niche of invasive population of D. valens in Chinese mainland only occupied a limited portion of the niche of native population in North America, leaving a substantial native niche unfilled and without any niche expansion. The suitable regions for D. valens are predicted in central and southern North America and central and northeastern Chinese mainland. The overlap with the suitable regions of L. procerum included eastern North America and the central and northeastern Chinese mainland under historical climatic scenarios. The regions susceptible to their symbiotic damage will shift northward in response to future climate change. CONCLUSIONS Projected distributions of D. valens and its symbiotic fungus, along with areas vulnerable to their symbiotic damage, provide essential insights for devising strategies against this association. Additionally, our study contributes to comprehending how biogeographic approaches aid in estimating potential risks of pest–pathogen interactions in forests within a warming world. © 2024 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI