UANet: An Uncertainty-Aware Network for Building Extraction From Remote Sensing Images

计算机科学 数据挖掘 编码器 特征提取 像素 深度学习 代表(政治) 骨料(复合) 特征(语言学) 人工智能 机器学习 模式识别(心理学) 操作系统 哲学 复合材料 政治 材料科学 法学 语言学 政治学
作者
Jiepan Li,Wei He,Weinan Cao,Liangpei Zhang,Hongyan Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:17
标识
DOI:10.1109/tgrs.2024.3361211
摘要

Building extraction aims to segment building pixels from remote sensing images and plays an essential role in many applications, such as city planning and urban dynamic monitoring. Over the past few years, deep learning methods with encoder–decoder architectures have achieved remarkable performance due to their powerful feature representation capability. Nevertheless, due to the varying scales and styles of buildings, conventional deep learning models always suffer from uncertain predictions and cannot accurately distinguish the complete footprints of the building from the complex distribution of ground objects, leading to a large degree of omission and commission. In this paper, we realize the importance of uncertain prediction and propose a novel and straightforward Uncertainty-Aware Network (UANet) to alleviate this problem. Specifically, we first apply a general encoder–decoder network to obtain a building extraction map with relatively high uncertainty. Second, in order to aggregate the useful information in the highest-level features, we design a Prior Information Guide Module to guide the highest-level features in learning the prior information from the conventional extraction map. Third, based on the uncertain extraction map, we introduce an Uncertainty Rank Algorithm to measure the uncertainty level of each pixel belonging to the foreground and the background. We further combine this algorithm with the proposed Uncertainty-Aware Fusion Module to facilitate level-by-level feature refinement and obtain the final refined extraction map with low uncertainty. To verify the performance of our proposed UANet, we conduct extensive experiments on three public building datasets, including the WHU building dataset, the Massachusetts building dataset, and the Inria aerial image dataset. Results demonstrate that the proposed UANet outperforms other state-of-the-art algorithms by a large margin. The source code of the proposed UANet is available at https://github.com/Henryjiepanli/Uncertainty-aware-Network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助是小杨啊采纳,获得30
1秒前
徐凤年完成签到 ,获得积分20
1秒前
2秒前
Tau发布了新的文献求助10
3秒前
玲玲发布了新的文献求助10
5秒前
芊瑶发布了新的文献求助10
6秒前
jinfu发布了新的文献求助30
6秒前
自由的雪发布了新的文献求助30
6秒前
6秒前
lxy应助Hello采纳,获得10
7秒前
雪山飞狐小叮叮完成签到,获得积分20
7秒前
8秒前
zhogwe完成签到,获得积分10
8秒前
8秒前
jingzhe完成签到,获得积分10
9秒前
zho发布了新的文献求助10
9秒前
米米米发布了新的文献求助10
9秒前
Jasper应助阿莫仙采纳,获得10
10秒前
拼搏的惜天完成签到,获得积分10
11秒前
dalibaba完成签到,获得积分10
11秒前
HEIKU应助wjzhan采纳,获得20
11秒前
11秒前
12秒前
刘闹闹完成签到 ,获得积分10
12秒前
NexusExplorer应助米米米采纳,获得10
12秒前
李解万岁发布了新的文献求助10
12秒前
扎心发布了新的文献求助10
14秒前
14秒前
Orange应助Anny采纳,获得10
15秒前
所所应助是小杨啊采纳,获得10
15秒前
要减肥的乐双完成签到 ,获得积分10
16秒前
香蕉觅云应助标致的不斜采纳,获得10
16秒前
16秒前
Liqy完成签到,获得积分20
19秒前
咖啡续命完成签到,获得积分10
19秒前
Kalimba完成签到,获得积分10
19秒前
傲娇发布了新的文献求助10
19秒前
wanci应助大曼采纳,获得10
20秒前
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228778
求助须知:如何正确求助?哪些是违规求助? 2876528
关于积分的说明 8195549
捐赠科研通 2543815
什么是DOI,文献DOI怎么找? 1374031
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621506