UANet: An Uncertainty-Aware Network for Building Extraction From Remote Sensing Images

计算机科学 数据挖掘 编码器 特征提取 像素 深度学习 代表(政治) 骨料(复合) 特征(语言学) 人工智能 机器学习 模式识别(心理学) 操作系统 哲学 复合材料 政治 材料科学 法学 语言学 政治学
作者
Jiepan Li,Wei He,Weinan Cao,Liangpei Zhang,Hongyan Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:34
标识
DOI:10.1109/tgrs.2024.3361211
摘要

Building extraction aims to segment building pixels from remote sensing images and plays an essential role in many applications, such as city planning and urban dynamic monitoring. Over the past few years, deep learning methods with encoder–decoder architectures have achieved remarkable performance due to their powerful feature representation capability. Nevertheless, due to the varying scales and styles of buildings, conventional deep learning models always suffer from uncertain predictions and cannot accurately distinguish the complete footprints of the building from the complex distribution of ground objects, leading to a large degree of omission and commission. In this paper, we realize the importance of uncertain prediction and propose a novel and straightforward Uncertainty-Aware Network (UANet) to alleviate this problem. Specifically, we first apply a general encoder–decoder network to obtain a building extraction map with relatively high uncertainty. Second, in order to aggregate the useful information in the highest-level features, we design a Prior Information Guide Module to guide the highest-level features in learning the prior information from the conventional extraction map. Third, based on the uncertain extraction map, we introduce an Uncertainty Rank Algorithm to measure the uncertainty level of each pixel belonging to the foreground and the background. We further combine this algorithm with the proposed Uncertainty-Aware Fusion Module to facilitate level-by-level feature refinement and obtain the final refined extraction map with low uncertainty. To verify the performance of our proposed UANet, we conduct extensive experiments on three public building datasets, including the WHU building dataset, the Massachusetts building dataset, and the Inria aerial image dataset. Results demonstrate that the proposed UANet outperforms other state-of-the-art algorithms by a large margin. The source code of the proposed UANet is available at https://github.com/Henryjiepanli/Uncertainty-aware-Network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DYT完成签到,获得积分10
刚刚
点凌蝶完成签到,获得积分10
刚刚
浮游应助洞两采纳,获得10
1秒前
萌only完成签到 ,获得积分10
1秒前
Zac完成签到,获得积分10
1秒前
儒雅龙完成签到 ,获得积分10
1秒前
欣喜电源完成签到,获得积分10
2秒前
熙泽完成签到,获得积分10
2秒前
Irene101588关注了科研通微信公众号
2秒前
赵小米完成签到,获得积分10
3秒前
GD发布了新的文献求助10
3秒前
求助哥发布了新的文献求助10
3秒前
3秒前
领导范儿应助colin采纳,获得10
4秒前
端庄醉山发布了新的文献求助30
4秒前
iwaking完成签到,获得积分10
4秒前
JJH完成签到,获得积分20
4秒前
rock发布了新的文献求助10
4秒前
zt涛完成签到 ,获得积分10
5秒前
梦在远方完成签到 ,获得积分10
5秒前
yaya发布了新的文献求助10
5秒前
领导范儿应助是昭昭呀采纳,获得10
5秒前
小杭76应助研友_Good Hope采纳,获得10
5秒前
5秒前
无人情深完成签到,获得积分10
6秒前
云泥完成签到,获得积分10
6秒前
7秒前
李东东发布了新的文献求助10
7秒前
nuomici完成签到,获得积分10
7秒前
华仔应助wenhui采纳,获得30
8秒前
一只五条悟完成签到,获得积分10
8秒前
骑着八十岁老太过马路完成签到,获得积分10
8秒前
小泉完成签到 ,获得积分10
8秒前
8秒前
一克拉冰糖完成签到,获得积分10
8秒前
顺心的书包完成签到,获得积分10
8秒前
差点长成帅哥完成签到,获得积分10
9秒前
一枚小豆完成签到,获得积分10
9秒前
桐桐应助mimi采纳,获得10
9秒前
LKX发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269731
求助须知:如何正确求助?哪些是违规求助? 4428099
关于积分的说明 13782459
捐赠科研通 4305666
什么是DOI,文献DOI怎么找? 2362844
邀请新用户注册赠送积分活动 1358476
关于科研通互助平台的介绍 1321232