Machine learning improves the prediction of significant fibrosis in Asian patients with metabolic dysfunction‐associated steatotic liver disease – The Gut and Obesity in Asia (GO‐ASIA) Study

医学 糖尿病 肥胖 疾病 纤维化 内科学 肝病 胃肠病学 脂肪肝 代谢综合征 内分泌学
作者
Nipun Verma,Ajay Duseja,Manu Mehta,Arka De,Huapeng Lin,Vincent Wai–Sun Wong,Grace Lai–Hung Wong,Ruveena Bhavani Rajaram,Wah‐Kheong Chan,Sanjiv Mahadeva,Ming‐Hua Zheng,Wen‐Yue Liu,Sombat Treeprasertsuk,Thaninee Prasoppokakorn,Satoru Kakizaki,Yosuke Seki,Kazunori Kasama,Phunchai Charatcharoenwitthaya,Phalath Sathirawich,Anand V. Kulkarni,Hery Djagat Purnomo,Lubna Kamani,Yeong Yeh Lee,Mung Seong Wong,Eunice Xiang‐Xuan Tan,Dan Yock Young
出处
期刊:Alimentary Pharmacology & Therapeutics [Wiley]
卷期号:59 (6): 774-788 被引量:5
标识
DOI:10.1111/apt.17891
摘要

Summary Background The precise estimation of cases with significant fibrosis (SF) is an unmet goal in non‐alcoholic fatty liver disease (NAFLD/MASLD). Aims We evaluated the performance of machine learning (ML) and non‐patented scores for ruling out SF among NAFLD/MASLD patients. Methods Twenty‐one ML models were trained ( N = 1153), tested ( N = 283), and validated ( N = 220) on clinical and biochemical parameters of histologically‐proven NAFLD/MASLD patients ( N = 1656) collected across 14 centres in 8 Asian countries. Their performance for detecting histological‐SF (≥F2fibrosis) were evaluated with APRI, FIB4, NFS, BARD, and SAFE (NPV/F1‐score as model‐selection criteria). Results Patients aged 47 years (median), 54.6% males, 73.7% with metabolic syndrome, and 32.9% with histological‐SF were included in the study. Patients with SFvs.no‐SF had higher age, aminotransferases, fasting plasma glucose, metabolic syndrome, uncontrolled diabetes, and NAFLD activity score ( p < 0.001, each). ML models showed 7%–12% better discrimination than FIB‐4 to detect SF. Optimised random forest (RF) yielded best NPV/F1 in overall set (0.947/0.754), test set (0.798/0.588) and validation set (0.852/0.559), as compared to FIB4 in overall set (0.744/0.499), test set (0.722/0.456), and validation set (0.806/0.507). Compared to FIB‐4, RF could pick 10 times more patients with SF, reduce unnecessary referrals by 28%, and prevent missed referrals by 78%. Age, AST, ALT fasting plasma glucose, and platelet count were top features determining the SF. Sequential use of SAFE < 140 and FIB4 < 1.2 (when SAFE > 140) was next best in ruling out SF (NPV of 0.757, 0.724 and 0.827 in overall, test and validation set). Conclusions ML with clinical, anthropometric data and simple blood investigations perform better than FIB‐4 for ruling out SF in biopsy‐proven Asian NAFLD/MASLD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Rena发布了新的文献求助10
4秒前
生动的伟宸完成签到,获得积分10
6秒前
7秒前
8秒前
dochx完成签到,获得积分10
8秒前
9秒前
Jasper应助Muncy采纳,获得10
9秒前
9秒前
tramp应助光亮妙之采纳,获得10
10秒前
mnbvcxz完成签到,获得积分10
11秒前
hanbing发布了新的文献求助30
11秒前
Coatings发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
mnbvcxz发布了新的文献求助10
15秒前
15秒前
烟花应助小雨采纳,获得10
16秒前
科研通AI5应助天真的冬瓜采纳,获得10
16秒前
16秒前
上官若男应助神凰采纳,获得10
17秒前
Tttting发布了新的文献求助20
17秒前
17秒前
!!应助ardejiang采纳,获得10
17秒前
18秒前
科研民工完成签到,获得积分10
18秒前
光亮猫咪发布了新的文献求助10
18秒前
19秒前
19秒前
柚子发布了新的文献求助20
19秒前
那些年发布了新的文献求助10
20秒前
Jimmy_King发布了新的文献求助30
21秒前
maopp发布了新的文献求助10
22秒前
lucy发布了新的文献求助10
23秒前
液晶屏99发布了新的文献求助10
23秒前
mini发布了新的文献求助10
24秒前
所所应助记忆采纳,获得10
24秒前
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477027
求助须知:如何正确求助?哪些是违规求助? 3068547
关于积分的说明 9108474
捐赠科研通 2759970
什么是DOI,文献DOI怎么找? 1514539
邀请新用户注册赠送积分活动 700313
科研通“疑难数据库(出版商)”最低求助积分说明 699422