医学
糖尿病
肥胖
疾病
纤维化
内科学
肝病
胃肠病学
脂肪肝
代谢综合征
内分泌学
作者
Nipun Verma,Ajay Duseja,Manu Mehta,Arka De,Huapeng Lin,Vincent Wai–Sun Wong,Grace Lai–Hung Wong,Ruveena Bhavani Rajaram,Wah‐Kheong Chan,Sanjiv Mahadeva,Ming‐Hua Zheng,Wen‐Yue Liu,Sombat Treeprasertsuk,Thaninee Prasoppokakorn,Satoru Kakizaki,Yosuke Seki,Kazunori Kasama,Phunchai Charatcharoenwitthaya,Phalath Sathirawich,Anand V. Kulkarni,Hery Djagat Purnomo,Lubna Kamani,Yeong Yeh Lee,Mung Seong Wong,Eunice Xiang‐Xuan Tan,Dan Yock Young
摘要
Summary Background The precise estimation of cases with significant fibrosis (SF) is an unmet goal in non‐alcoholic fatty liver disease (NAFLD/MASLD). Aims We evaluated the performance of machine learning (ML) and non‐patented scores for ruling out SF among NAFLD/MASLD patients. Methods Twenty‐one ML models were trained ( N = 1153), tested ( N = 283), and validated ( N = 220) on clinical and biochemical parameters of histologically‐proven NAFLD/MASLD patients ( N = 1656) collected across 14 centres in 8 Asian countries. Their performance for detecting histological‐SF (≥F2fibrosis) were evaluated with APRI, FIB4, NFS, BARD, and SAFE (NPV/F1‐score as model‐selection criteria). Results Patients aged 47 years (median), 54.6% males, 73.7% with metabolic syndrome, and 32.9% with histological‐SF were included in the study. Patients with SFvs.no‐SF had higher age, aminotransferases, fasting plasma glucose, metabolic syndrome, uncontrolled diabetes, and NAFLD activity score ( p < 0.001, each). ML models showed 7%–12% better discrimination than FIB‐4 to detect SF. Optimised random forest (RF) yielded best NPV/F1 in overall set (0.947/0.754), test set (0.798/0.588) and validation set (0.852/0.559), as compared to FIB4 in overall set (0.744/0.499), test set (0.722/0.456), and validation set (0.806/0.507). Compared to FIB‐4, RF could pick 10 times more patients with SF, reduce unnecessary referrals by 28%, and prevent missed referrals by 78%. Age, AST, ALT fasting plasma glucose, and platelet count were top features determining the SF. Sequential use of SAFE < 140 and FIB4 < 1.2 (when SAFE > 140) was next best in ruling out SF (NPV of 0.757, 0.724 and 0.827 in overall, test and validation set). Conclusions ML with clinical, anthropometric data and simple blood investigations perform better than FIB‐4 for ruling out SF in biopsy‐proven Asian NAFLD/MASLD patients.