HSH-UNet: Hybrid selective high order interactive U-shaped model for automated skin lesion segmentation

计算机科学 人工智能 分割 卷积神经网络 编码(集合论) 机器学习 程序设计语言 集合(抽象数据类型)
作者
Renkai Wu,Hongli Lv,Pengchen Liang,Xiaoxu Cui,Qing Chang,Xuan Huang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107798-107798 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107798
摘要

The use of computer-assisted clinical dermatologists to diagnose skin diseases is an important aid. And computer-assisted techniques mainly use deep neural networks. Recently, the proposal of higher-order spatial interaction operations in deep neural networks has attracted a lot of attention. It has the advantages of both convolution and transformers, and additionally has the advantages of efficient, extensible and translation-equivariant. However, the selection of the interaction order in higher-order interaction operations requires tedious manual selection of a suitable interaction order. In this paper, a hybrid selective higher-order interaction U-shaped model HSH-UNet is proposed to solve the problem that requires manual selection of the order. Specifically, we design a hybrid selective high-order interaction module HSHB embedded in the U-shaped model. The HSHB adaptively selects the appropriate order for the interaction operation channel-by-channel under the computationally obtained guiding features. The hybrid order interaction also solves the problem of fixed order of interaction at each level. We performed extensive experiments on three public skin lesion datasets and our own dataset to validate the effectiveness of our proposed method. The ablation experiments demonstrate the effectiveness of our hybrid selective higher order interaction module. The comparison with state-of-the-art methods also demonstrates the superiority of our proposed HSH-UNet performance. The code is available at https://github.com/wurenkai/HSH-UNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Freedom完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
大模型应助23采纳,获得10
刚刚
1秒前
害羞山菡发布了新的文献求助10
1秒前
饱满的皮皮虾完成签到,获得积分10
2秒前
2秒前
姜雪莲完成签到,获得积分10
4秒前
MF完成签到,获得积分20
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
YX1994发布了新的文献求助30
6秒前
这一天完成签到,获得积分10
7秒前
7秒前
NexusExplorer应助飞翔荷兰人采纳,获得10
8秒前
8秒前
CH完成签到,获得积分10
9秒前
单于无极完成签到,获得积分10
9秒前
10秒前
10秒前
Lutras完成签到,获得积分10
10秒前
得得祎祎完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
Lutras发布了新的文献求助10
13秒前
14秒前
yy完成签到 ,获得积分10
14秒前
世间安得双全法完成签到,获得积分0
14秒前
15秒前
无辜的秋荷完成签到,获得积分10
15秒前
烟花应助贪玩的秋柔采纳,获得10
15秒前
出海流浪发布了新的文献求助10
15秒前
Captainhana发布了新的文献求助10
15秒前
烂漫的访天完成签到 ,获得积分10
16秒前
vali完成签到,获得积分10
16秒前
轻松千山发布了新的文献求助20
17秒前
田様应助维生素采纳,获得10
19秒前
木易木土完成签到,获得积分10
19秒前
Erin完成签到,获得积分10
19秒前
不吃番茄炒蛋完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717803
求助须知:如何正确求助?哪些是违规求助? 5248178
关于积分的说明 15283201
捐赠科研通 4867942
什么是DOI,文献DOI怎么找? 2613926
邀请新用户注册赠送积分活动 1563847
关于科研通互助平台的介绍 1521332