HSH-UNet: Hybrid selective high order interactive U-shaped model for automated skin lesion segmentation

计算机科学 人工智能 分割 卷积神经网络 编码(集合论) 机器学习 程序设计语言 集合(抽象数据类型)
作者
Renkai Wu,Hongli Lv,Pengchen Liang,Xiaoxu Cui,Qing Chang,Xuan Huang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107798-107798 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107798
摘要

The use of computer-assisted clinical dermatologists to diagnose skin diseases is an important aid. And computer-assisted techniques mainly use deep neural networks. Recently, the proposal of higher-order spatial interaction operations in deep neural networks has attracted a lot of attention. It has the advantages of both convolution and transformers, and additionally has the advantages of efficient, extensible and translation-equivariant. However, the selection of the interaction order in higher-order interaction operations requires tedious manual selection of a suitable interaction order. In this paper, a hybrid selective higher-order interaction U-shaped model HSH-UNet is proposed to solve the problem that requires manual selection of the order. Specifically, we design a hybrid selective high-order interaction module HSHB embedded in the U-shaped model. The HSHB adaptively selects the appropriate order for the interaction operation channel-by-channel under the computationally obtained guiding features. The hybrid order interaction also solves the problem of fixed order of interaction at each level. We performed extensive experiments on three public skin lesion datasets and our own dataset to validate the effectiveness of our proposed method. The ablation experiments demonstrate the effectiveness of our hybrid selective higher order interaction module. The comparison with state-of-the-art methods also demonstrates the superiority of our proposed HSH-UNet performance. The code is available at https://github.com/wurenkai/HSH-UNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
开朗访曼发布了新的文献求助10
2秒前
3秒前
3秒前
livinglast发布了新的文献求助10
3秒前
赵云发布了新的文献求助10
4秒前
某科学的上条当麻完成签到,获得积分20
5秒前
摆渡人发布了新的文献求助10
5秒前
5秒前
chen完成签到,获得积分10
6秒前
JamesPei应助111采纳,获得10
6秒前
longer发布了新的文献求助10
6秒前
6秒前
清脆靳完成签到,获得积分10
7秒前
ai发布了新的文献求助10
8秒前
潦草小狗完成签到 ,获得积分10
8秒前
默默易梦应助vivian26采纳,获得10
8秒前
新手菜鸟完成签到,获得积分10
9秒前
Koi发布了新的文献求助10
10秒前
Chany完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
情怀应助JQM采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
asdfzxcv应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
王王应助科研通管家采纳,获得10
12秒前
王卫应助科研通管家采纳,获得10
12秒前
12秒前
wanci应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
asdfzxcv应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720875
求助须知:如何正确求助?哪些是违规求助? 5262673
关于积分的说明 15292448
捐赠科研通 4870116
什么是DOI,文献DOI怎么找? 2615251
邀请新用户注册赠送积分活动 1565182
关于科研通互助平台的介绍 1522256