Diagnostic accuracy of artificial intelligence in detecting retinitis pigmentosa: A systematic review and meta-analysis

荟萃分析 接收机工作特性 医学 色素性视网膜炎 眼底摄影 人工智能 二元分析 诊断准确性 眼底(子宫) 眼科 统计 病理 内科学 计算机科学 数学 视力 视网膜 荧光血管造影
作者
Ayman Mohammed Musleh,Saif Aldeen AlRyalat,Mohammad Naim Abid,Yahia Salem,Haitham Mounir Hamila,Ahmed B. Sallam
出处
期刊:Survey of Ophthalmology [Elsevier BV]
卷期号:69 (3): 411-417 被引量:1
标识
DOI:10.1016/j.survophthal.2023.11.010
摘要

Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of AI in detecting RP using various ophthalmic images. We conducted a systematic search on PubMed, Scopus, and Web of Science databases on December 31, 2022. We included studies in the English language that used any ophthalmic imaging modality, such as OCT or fundus photography, used any AI technologies, had at least an expert in ophthalmology as a reference standard, and proposed an AI algorithm able to distinguish between images with and without retinitis pigmentosa features. We considered the sensitivity, specificity, and area under the curve (AUC) as the main measures of accuracy. We had a total of 14 studies in the qualitative analysis and 10 studies in the quantitative analysis. In total, the studies included in the meta-analysis dealt with 920,162 images. Overall, AI showed an excellent performance in detecting RP with pooled sensitivity and specificity of 0.985 [95%CI: 0.948-0.996], 0.993 [95%CI: 0.982-0.997] respectively. The area under the receiver operating characteristic (AUROC), using a random-effect model, was calculated to be 0.999 [95%CI: 0.998-1.000; P < 0.001]. The Zhou and Dendukuri I² test revealed a low level of heterogeneity between the studies, with [I2 = 19.94%] for sensitivity and [I2 = 21.07%] for specificity. The bivariate I² [20.33%] also suggested a low degree of heterogeneity. We found evidence supporting the accuracy of AI in the detection of RP; however, the level of heterogeneity between the studies was low.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡泡糖与一世安完成签到,获得积分20
刚刚
刚刚
1秒前
hhh发布了新的文献求助10
1秒前
rrfhl完成签到,获得积分10
1秒前
qaa2274278941发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
4秒前
4秒前
5秒前
高大山彤发布了新的文献求助10
6秒前
红莲墨生发布了新的文献求助10
6秒前
18关闭了18文献求助
6秒前
JamesPei应助大巧若拙采纳,获得10
6秒前
birdy发布了新的文献求助10
6秒前
7秒前
7秒前
dangpengyichuan完成签到,获得积分10
7秒前
小二郎应助沉默的尔槐采纳,获得10
8秒前
8秒前
面包康完成签到,获得积分10
8秒前
9秒前
zfg发布了新的文献求助10
9秒前
liiiii完成签到,获得积分10
9秒前
9秒前
玖若辰发布了新的文献求助10
10秒前
面包康发布了新的文献求助10
10秒前
lfzw发布了新的文献求助30
10秒前
明亮夏旋发布了新的文献求助10
11秒前
11秒前
鱼咬羊发布了新的文献求助30
11秒前
完美世界应助小奶采纳,获得10
11秒前
归尘应助Wang采纳,获得30
11秒前
有氧呼吸发布了新的文献求助10
12秒前
12秒前
18驳回了Ava应助
13秒前
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130