Diagnostic accuracy of artificial intelligence in detecting retinitis pigmentosa: A systematic review and meta-analysis

荟萃分析 接收机工作特性 医学 色素性视网膜炎 眼底摄影 人工智能 二元分析 诊断准确性 眼底(子宫) 眼科 统计 病理 内科学 计算机科学 数学 视力 视网膜 荧光血管造影
作者
Ayman Musleh,Saif Aldeen AlRyalat,Mohammad Naim Abid,Yahia Salem,Haitham Mounir Hamila,Ahmed B. Sallam
出处
期刊:Survey of Ophthalmology [Elsevier BV]
卷期号:69 (3): 411-417 被引量:6
标识
DOI:10.1016/j.survophthal.2023.11.010
摘要

Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of AI in detecting RP using various ophthalmic images. We conducted a systematic search on PubMed, Scopus, and Web of Science databases on December 31, 2022. We included studies in the English language that used any ophthalmic imaging modality, such as OCT or fundus photography, used any AI technologies, had at least an expert in ophthalmology as a reference standard, and proposed an AI algorithm able to distinguish between images with and without retinitis pigmentosa features. We considered the sensitivity, specificity, and area under the curve (AUC) as the main measures of accuracy. We had a total of 14 studies in the qualitative analysis and 10 studies in the quantitative analysis. In total, the studies included in the meta-analysis dealt with 920,162 images. Overall, AI showed an excellent performance in detecting RP with pooled sensitivity and specificity of 0.985 [95%CI: 0.948-0.996], 0.993 [95%CI: 0.982-0.997] respectively. The area under the receiver operating characteristic (AUROC), using a random-effect model, was calculated to be 0.999 [95%CI: 0.998-1.000; P < 0.001]. The Zhou and Dendukuri I² test revealed a low level of heterogeneity between the studies, with [I2 = 19.94%] for sensitivity and [I2 = 21.07%] for specificity. The bivariate I² [20.33%] also suggested a low degree of heterogeneity. We found evidence supporting the accuracy of AI in the detection of RP; however, the level of heterogeneity between the studies was low.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助忘尘采纳,获得10
刚刚
英俊的铭应助liuxian采纳,获得10
1秒前
Mxaxxxx发布了新的文献求助10
2秒前
3秒前
在水一方应助oleskarabach采纳,获得10
3秒前
5秒前
5秒前
cccf发布了新的文献求助10
6秒前
Zewen_Li应助研友_LJGOan采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
烤乳猪发布了新的文献求助10
8秒前
难过以晴发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
lmd250909完成签到,获得积分10
11秒前
11秒前
国家一级保护废物点心完成签到,获得积分10
12秒前
李健的粉丝团团长应助cccf采纳,获得100
13秒前
GUIGUI发布了新的文献求助10
13秒前
13秒前
忘尘发布了新的文献求助10
13秒前
Gnehsnuy完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
和谐项链发布了新的文献求助10
16秒前
紫熊发布了新的文献求助20
18秒前
土土完成签到,获得积分10
18秒前
优美芝发布了新的文献求助10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
Xing发布了新的文献求助10
20秒前
oleskarabach发布了新的文献求助10
20秒前
香菜兔子完成签到,获得积分10
21秒前
GUIGUI完成签到,获得积分10
21秒前
科研通AI6应助renren采纳,获得10
21秒前
愉快又莲发布了新的文献求助10
23秒前
淡然紫寒发布了新的文献求助10
24秒前
123完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408