Diagnostic accuracy of artificial intelligence in detecting retinitis pigmentosa: A systematic review and meta-analysis

荟萃分析 接收机工作特性 医学 色素性视网膜炎 眼底摄影 人工智能 二元分析 诊断准确性 眼底(子宫) 眼科 统计 病理 内科学 计算机科学 数学 视力 视网膜 荧光血管造影
作者
Ayman Mohammed Musleh,Saif Aldeen AlRyalat,Mohammad Naim Abid,Yahia Salem,Haitham Mounir Hamila,Ahmed B. Sallam
出处
期刊:Survey of Ophthalmology [Elsevier]
卷期号:69 (3): 411-417 被引量:1
标识
DOI:10.1016/j.survophthal.2023.11.010
摘要

Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of AI in detecting RP using various ophthalmic images. We conducted a systematic search on PubMed, Scopus, and Web of Science databases on December 31, 2022. We included studies in the English language that used any ophthalmic imaging modality, such as OCT or fundus photography, used any AI technologies, had at least an expert in ophthalmology as a reference standard, and proposed an AI algorithm able to distinguish between images with and without retinitis pigmentosa features. We considered the sensitivity, specificity, and area under the curve (AUC) as the main measures of accuracy. We had a total of 14 studies in the qualitative analysis and 10 studies in the quantitative analysis. In total, the studies included in the meta-analysis dealt with 920,162 images. Overall, AI showed an excellent performance in detecting RP with pooled sensitivity and specificity of 0.985 [95%CI: 0.948-0.996], 0.993 [95%CI: 0.982-0.997] respectively. The area under the receiver operating characteristic (AUROC), using a random-effect model, was calculated to be 0.999 [95%CI: 0.998-1.000; P < 0.001]. The Zhou and Dendukuri I² test revealed a low level of heterogeneity between the studies, with [I2 = 19.94%] for sensitivity and [I2 = 21.07%] for specificity. The bivariate I² [20.33%] also suggested a low degree of heterogeneity. We found evidence supporting the accuracy of AI in the detection of RP; however, the level of heterogeneity between the studies was low.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助明亮无颜采纳,获得10
1秒前
烟花应助水三寿采纳,获得10
1秒前
tuomasi2发布了新的文献求助10
1秒前
2秒前
2秒前
群群发布了新的文献求助10
5秒前
6秒前
我是老大应助sikaixue采纳,获得10
6秒前
bean完成签到 ,获得积分10
6秒前
天天快乐应助CARL采纳,获得10
6秒前
栀璃鸳挽发布了新的文献求助10
7秒前
归去虎牙发布了新的文献求助10
8秒前
文静冷梅完成签到,获得积分10
8秒前
ZYP发布了新的文献求助10
8秒前
8秒前
华仔应助hgzz采纳,获得10
8秒前
刘某完成签到,获得积分10
9秒前
10秒前
如初完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
Vancy发布了新的文献求助10
13秒前
ZQ发布了新的文献求助10
14秒前
qqqqqqq发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
zengzzz发布了新的文献求助10
16秒前
CARL发布了新的文献求助10
18秒前
善学以致用应助小新采纳,获得10
18秒前
18秒前
hgzz发布了新的文献求助10
20秒前
ZYP完成签到,获得积分10
21秒前
Re完成签到,获得积分10
22秒前
23秒前
tuomasi2发布了新的文献求助10
23秒前
24秒前
wwwwrrrrr完成签到,获得积分10
24秒前
南风应助何呵呵采纳,获得10
25秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416783
求助须知:如何正确求助?哪些是违规求助? 3018648
关于积分的说明 8884570
捐赠科研通 2705843
什么是DOI,文献DOI怎么找? 1483963
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681060