Diagnostic accuracy of artificial intelligence in detecting retinitis pigmentosa: A systematic review and meta-analysis

荟萃分析 接收机工作特性 医学 色素性视网膜炎 眼底摄影 人工智能 二元分析 诊断准确性 眼底(子宫) 眼科 统计 病理 内科学 计算机科学 数学 视力 视网膜 荧光血管造影
作者
Ayman Mohammed Musleh,Saif Aldeen AlRyalat,Mohammad Naim Abid,Yahia Salem,Haitham Mounir Hamila,Ahmed B. Sallam
出处
期刊:Survey of Ophthalmology [Elsevier]
卷期号:69 (3): 411-417 被引量:1
标识
DOI:10.1016/j.survophthal.2023.11.010
摘要

Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of AI in detecting RP using various ophthalmic images. We conducted a systematic search on PubMed, Scopus, and Web of Science databases on December 31, 2022. We included studies in the English language that used any ophthalmic imaging modality, such as OCT or fundus photography, used any AI technologies, had at least an expert in ophthalmology as a reference standard, and proposed an AI algorithm able to distinguish between images with and without retinitis pigmentosa features. We considered the sensitivity, specificity, and area under the curve (AUC) as the main measures of accuracy. We had a total of 14 studies in the qualitative analysis and 10 studies in the quantitative analysis. In total, the studies included in the meta-analysis dealt with 920,162 images. Overall, AI showed an excellent performance in detecting RP with pooled sensitivity and specificity of 0.985 [95%CI: 0.948-0.996], 0.993 [95%CI: 0.982-0.997] respectively. The area under the receiver operating characteristic (AUROC), using a random-effect model, was calculated to be 0.999 [95%CI: 0.998-1.000; P < 0.001]. The Zhou and Dendukuri I² test revealed a low level of heterogeneity between the studies, with [I2 = 19.94%] for sensitivity and [I2 = 21.07%] for specificity. The bivariate I² [20.33%] also suggested a low degree of heterogeneity. We found evidence supporting the accuracy of AI in the detection of RP; however, the level of heterogeneity between the studies was low.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩金龙发布了新的文献求助10
1秒前
1秒前
小飞七应助红毛兔采纳,获得10
1秒前
小仙虎殿下完成签到 ,获得积分10
1秒前
Ethan完成签到,获得积分10
2秒前
2秒前
3秒前
感谢抹茶芋泥小圆子转发科研通微信,获得积分50
3秒前
子春完成签到 ,获得积分10
3秒前
平常的纸飞机完成签到,获得积分10
3秒前
soso完成签到 ,获得积分10
5秒前
5秒前
狗狗应助跳跃乘风采纳,获得20
6秒前
小油条应助Amai采纳,获得20
6秒前
科研通AI5应助clear采纳,获得10
6秒前
韩金龙完成签到,获得积分10
7秒前
科研通AI2S应助LiShin采纳,获得10
7秒前
希望天下0贩的0应助尘雾采纳,获得10
9秒前
9秒前
12345完成签到,获得积分10
10秒前
Lialilico完成签到,获得积分10
11秒前
Akim应助我必做出来采纳,获得50
11秒前
12秒前
随机起的名完成签到,获得积分10
12秒前
Owen应助努力的小狗屁采纳,获得10
13秒前
13秒前
vuig完成签到 ,获得积分10
13秒前
哈哈哈的一笑完成签到,获得积分10
13秒前
13秒前
Emma完成签到,获得积分10
13秒前
14秒前
14秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
14秒前
huanger完成签到,获得积分10
14秒前
Tayzon完成签到 ,获得积分10
14秒前
我测你码完成签到,获得积分10
14秒前
超级宇宙二踢脚完成签到,获得积分10
15秒前
15秒前
16秒前
大气小新完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794