Diagnostic accuracy of artificial intelligence in detecting retinitis pigmentosa: A systematic review and meta-analysis

荟萃分析 接收机工作特性 医学 色素性视网膜炎 眼底摄影 人工智能 二元分析 诊断准确性 眼底(子宫) 眼科 统计 病理 内科学 计算机科学 数学 视力 视网膜 荧光血管造影
作者
Ayman Mohammed Musleh,Saif Aldeen AlRyalat,Mohammad Naim Abid,Yahia Salem,Haitham Mounir Hamila,Ahmed B. Sallam
出处
期刊:Survey of Ophthalmology [Elsevier]
被引量:1
标识
DOI:10.1016/j.survophthal.2023.11.010
摘要

Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of AI in detecting RP using various ophthalmic images. We conducted a systematic search on PubMed, Scopus, and Web of Science databases on December 31, 2022. We included studies in the English language that used any ophthalmic imaging modality, such as OCT or fundus photography, used any AI technologies, had at least an expert in ophthalmology as a reference standard, and proposed an AI algorithm able to distinguish between images with and without retinitis pigmentosa features. We considered the sensitivity, specificity, and area under the curve (AUC) as the main measures of accuracy. We had a total of 14 studies in the qualitative analysis and 10 studies in the quantitative analysis. In total, the studies included in the meta-analysis dealt with 920,162 images. Overall, AI showed an excellent performance in detecting RP with pooled sensitivity and specificity of 0.985 [95%CI: 0.948-0.996], 0.993 [95%CI: 0.982-0.997] respectively. The area under the receiver operating characteristic (AUROC), using a random-effect model, was calculated to be 0.999 [95%CI: 0.998-1.000; P < 0.001]. The Zhou and Dendukuri I² test revealed a low level of heterogeneity between the studies, with [I2 = 19.94%] for sensitivity and [I2 = 21.07%] for specificity. The bivariate I² [20.33%] also suggested a low degree of heterogeneity. We found evidence supporting the accuracy of AI in the detection of RP; however, the level of heterogeneity between the studies was low.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blackkk发布了新的文献求助30
5秒前
nannan完成签到,获得积分10
7秒前
深山何处钟声鸣完成签到 ,获得积分0
7秒前
研友_ZGmVjL发布了新的文献求助10
9秒前
毛豆应助JasonSun采纳,获得10
10秒前
方文杰完成签到 ,获得积分10
10秒前
小cc完成签到 ,获得积分0
12秒前
14秒前
Anna完成签到 ,获得积分10
14秒前
可可托海发布了新的文献求助30
15秒前
城南完成签到 ,获得积分10
15秒前
英俊亦瑶完成签到,获得积分10
16秒前
延胡索发布了新的文献求助10
17秒前
18秒前
20秒前
21秒前
24秒前
笨笨的复天完成签到 ,获得积分10
24秒前
zjuszk完成签到 ,获得积分10
24秒前
Xiaoz完成签到 ,获得积分10
26秒前
秋秋发布了新的文献求助10
27秒前
27秒前
wafo关注了科研通微信公众号
28秒前
舒心梦玉完成签到,获得积分10
28秒前
延胡索完成签到 ,获得积分10
29秒前
雨天完成签到,获得积分10
29秒前
32秒前
秋秋完成签到,获得积分10
34秒前
35秒前
38秒前
英俊的铭应助凡仔采纳,获得10
38秒前
将将完成签到,获得积分10
39秒前
自由的无色完成签到 ,获得积分10
40秒前
40秒前
41秒前
刺猬完成签到,获得积分10
42秒前
明年今日完成签到,获得积分20
42秒前
123完成签到,获得积分10
44秒前
44秒前
大虫子完成签到,获得积分10
44秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 700
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3088676
求助须知:如何正确求助?哪些是违规求助? 2740797
关于积分的说明 7561648
捐赠科研通 2390841
什么是DOI,文献DOI怎么找? 1268038
科研通“疑难数据库(出版商)”最低求助积分说明 613956
版权声明 598684