Fusing joint distribution and adversarial networks: A new transfer learning method for intelligent fault diagnosis

对抗制 分类器(UML) 人工智能 计算机科学 学习迁移 接头(建筑物) 断层(地质) 机器学习 领域(数学分析) 理论(学习稳定性) 工程类 数据挖掘 结构工程 地质学 数学分析 地震学 数学
作者
Xueyi Li,Tianyu Yu,Xiangkai Wang,Daiyou Li,Zhijie Xie,Xiangwei Kong
出处
期刊:Applied Acoustics [Elsevier]
卷期号:216: 109767-109767 被引量:1
标识
DOI:10.1016/j.apacoust.2023.109767
摘要

As integral components within rotating machinery, bearings and gears pose a critical challenge in fault diagnosis. Presently, data-driven fault diagnosis stands out as a viable approach. However, real-world operational variations readily induce domain shifts, complicating transfer learning and diminishing the diagnostic efficacy of models. The process of re-labeling the fault categories of model demands substantial time and financial resources. Consequently, to surmount these challenges, this study introduces a novel unsupervised transfer learning framework that leverages the amalgamation of joint distribution and adversarial networks for diagnosing faults in bearings and gears within rotating machinery.The joint adaptation network facilitates the learning of the transfer network by aligning the joint distribution across multiple specific domain layers. This alignment is achieved through the application of joint maximum mean discrepancy (JMMD) within the joint network. Simultaneously, the adversarial network employs a domain classifier to minimize the domain classification loss, treating it as the difference in domain distribution to mitigate domain shift effectively. The integration of these two methodologies accomplishes domain alignment, reduces model training time, and enhances the accuracy and stability of the diagnostic model.Validation of the proposed model framework is conducted using four sets of bearing faults and six sets of gear faults. The results confirm the superior accuracy and stability of the new model framework in addressing bearing and gear faults within the realm of rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akiba完成签到,获得积分10
3秒前
111完成签到,获得积分10
4秒前
wenquan发布了新的文献求助10
4秒前
可爱的函函应助天空之下采纳,获得10
4秒前
5秒前
Duckseid完成签到,获得积分10
5秒前
6秒前
6秒前
zz关闭了zz文献求助
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
任性迎南完成签到,获得积分10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
嘟噜嘟噜应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
大个应助科研通管家采纳,获得10
9秒前
小杭76应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
11秒前
梨落发布了新的文献求助20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424645
求助须知:如何正确求助?哪些是违规求助? 4538996
关于积分的说明 14164586
捐赠科研通 4455962
什么是DOI,文献DOI怎么找? 2444024
邀请新用户注册赠送积分活动 1435084
关于科研通互助平台的介绍 1412452