亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fusing joint distribution and adversarial networks: A new transfer learning method for intelligent fault diagnosis

对抗制 分类器(UML) 人工智能 计算机科学 学习迁移 接头(建筑物) 断层(地质) 机器学习 领域(数学分析) 理论(学习稳定性) 工程类 数据挖掘 结构工程 地质学 数学分析 地震学 数学
作者
Xueyi Li,Tianyu Yu,Xiangkai Wang,Daiyou Li,Zhijie Xie,Xiangwei Kong
出处
期刊:Applied Acoustics [Elsevier]
卷期号:216: 109767-109767 被引量:1
标识
DOI:10.1016/j.apacoust.2023.109767
摘要

As integral components within rotating machinery, bearings and gears pose a critical challenge in fault diagnosis. Presently, data-driven fault diagnosis stands out as a viable approach. However, real-world operational variations readily induce domain shifts, complicating transfer learning and diminishing the diagnostic efficacy of models. The process of re-labeling the fault categories of model demands substantial time and financial resources. Consequently, to surmount these challenges, this study introduces a novel unsupervised transfer learning framework that leverages the amalgamation of joint distribution and adversarial networks for diagnosing faults in bearings and gears within rotating machinery.The joint adaptation network facilitates the learning of the transfer network by aligning the joint distribution across multiple specific domain layers. This alignment is achieved through the application of joint maximum mean discrepancy (JMMD) within the joint network. Simultaneously, the adversarial network employs a domain classifier to minimize the domain classification loss, treating it as the difference in domain distribution to mitigate domain shift effectively. The integration of these two methodologies accomplishes domain alignment, reduces model training time, and enhances the accuracy and stability of the diagnostic model.Validation of the proposed model framework is conducted using four sets of bearing faults and six sets of gear faults. The results confirm the superior accuracy and stability of the new model framework in addressing bearing and gear faults within the realm of rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助cometx采纳,获得10
1秒前
风趣的梦露完成签到 ,获得积分10
7秒前
vinci完成签到,获得积分10
8秒前
淡淡的洋葱完成签到,获得积分10
16秒前
Panacea完成签到 ,获得积分10
17秒前
独特的易形完成签到 ,获得积分10
23秒前
27秒前
jeff完成签到,获得积分10
27秒前
29秒前
开胃咖喱完成签到,获得积分10
30秒前
Huzhu发布了新的文献求助10
36秒前
Tania完成签到,获得积分10
39秒前
47秒前
50秒前
51秒前
cometx发布了新的文献求助10
53秒前
55秒前
花陵完成签到 ,获得积分10
1分钟前
帅气的熊猫完成签到,获得积分10
1分钟前
粽子完成签到,获得积分10
1分钟前
彭于晏应助阿瓜师傅采纳,获得10
1分钟前
1分钟前
不才完成签到,获得积分10
1分钟前
cometx完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
2分钟前
去码头整点薯条完成签到,获得积分10
2分钟前
徐per爱豆完成签到 ,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
ADcal完成签到 ,获得积分10
2分钟前
2分钟前
badabadaba关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
badabadaba发布了新的文献求助30
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177