Fusing joint distribution and adversarial networks: A new transfer learning method for intelligent fault diagnosis

对抗制 分类器(UML) 人工智能 计算机科学 学习迁移 接头(建筑物) 断层(地质) 机器学习 领域(数学分析) 理论(学习稳定性) 工程类 数据挖掘 结构工程 数学分析 数学 地震学 地质学
作者
Xueyi Li,Tianyu Yu,Xiangkai Wang,Daiyou Li,Zhijie Xie,Xiangwei Kong
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:216: 109767-109767 被引量:1
标识
DOI:10.1016/j.apacoust.2023.109767
摘要

As integral components within rotating machinery, bearings and gears pose a critical challenge in fault diagnosis. Presently, data-driven fault diagnosis stands out as a viable approach. However, real-world operational variations readily induce domain shifts, complicating transfer learning and diminishing the diagnostic efficacy of models. The process of re-labeling the fault categories of model demands substantial time and financial resources. Consequently, to surmount these challenges, this study introduces a novel unsupervised transfer learning framework that leverages the amalgamation of joint distribution and adversarial networks for diagnosing faults in bearings and gears within rotating machinery.The joint adaptation network facilitates the learning of the transfer network by aligning the joint distribution across multiple specific domain layers. This alignment is achieved through the application of joint maximum mean discrepancy (JMMD) within the joint network. Simultaneously, the adversarial network employs a domain classifier to minimize the domain classification loss, treating it as the difference in domain distribution to mitigate domain shift effectively. The integration of these two methodologies accomplishes domain alignment, reduces model training time, and enhances the accuracy and stability of the diagnostic model.Validation of the proposed model framework is conducted using four sets of bearing faults and six sets of gear faults. The results confirm the superior accuracy and stability of the new model framework in addressing bearing and gear faults within the realm of rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lemon完成签到,获得积分10
2秒前
香蕉觅云应助Linson采纳,获得10
2秒前
llllx完成签到,获得积分10
4秒前
4秒前
5秒前
甜崽完成签到,获得积分10
7秒前
7秒前
小太阳发布了新的文献求助10
7秒前
8秒前
大胆班完成签到,获得积分10
8秒前
8秒前
Lynn完成签到 ,获得积分10
9秒前
愉快寒香完成签到,获得积分20
9秒前
9秒前
Cupid完成签到,获得积分10
10秒前
10秒前
10秒前
lalala发布了新的文献求助10
11秒前
魔幻勒完成签到 ,获得积分10
11秒前
史小霜发布了新的文献求助10
11秒前
甜崽发布了新的文献求助10
11秒前
愉快寒香发布了新的文献求助10
11秒前
12秒前
zhang完成签到,获得积分10
12秒前
果实发布了新的文献求助10
12秒前
辽阳太子完成签到 ,获得积分10
12秒前
李健的粉丝团团长应助jack采纳,获得10
13秒前
zzzzzzj发布了新的文献求助10
13秒前
14秒前
领导范儿应助白桃采纳,获得10
14秒前
铠甲勇士完成签到,获得积分10
14秒前
卡酷发布了新的文献求助10
14秒前
易吴鱼完成签到 ,获得积分10
15秒前
16秒前
梁婷完成签到,获得积分20
16秒前
黑桃完成签到,获得积分10
18秒前
19秒前
梁婷发布了新的文献求助10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149