Fusing joint distribution and adversarial networks: A new transfer learning method for intelligent fault diagnosis

对抗制 分类器(UML) 人工智能 计算机科学 学习迁移 接头(建筑物) 断层(地质) 机器学习 领域(数学分析) 理论(学习稳定性) 工程类 数据挖掘 结构工程 地质学 数学分析 地震学 数学
作者
Xueyi Li,Tianyu Yu,Xiangkai Wang,Daiyou Li,Zhijie Xie,Xiangwei Kong
出处
期刊:Applied Acoustics [Elsevier]
卷期号:216: 109767-109767 被引量:1
标识
DOI:10.1016/j.apacoust.2023.109767
摘要

As integral components within rotating machinery, bearings and gears pose a critical challenge in fault diagnosis. Presently, data-driven fault diagnosis stands out as a viable approach. However, real-world operational variations readily induce domain shifts, complicating transfer learning and diminishing the diagnostic efficacy of models. The process of re-labeling the fault categories of model demands substantial time and financial resources. Consequently, to surmount these challenges, this study introduces a novel unsupervised transfer learning framework that leverages the amalgamation of joint distribution and adversarial networks for diagnosing faults in bearings and gears within rotating machinery.The joint adaptation network facilitates the learning of the transfer network by aligning the joint distribution across multiple specific domain layers. This alignment is achieved through the application of joint maximum mean discrepancy (JMMD) within the joint network. Simultaneously, the adversarial network employs a domain classifier to minimize the domain classification loss, treating it as the difference in domain distribution to mitigate domain shift effectively. The integration of these two methodologies accomplishes domain alignment, reduces model training time, and enhances the accuracy and stability of the diagnostic model.Validation of the proposed model framework is conducted using four sets of bearing faults and six sets of gear faults. The results confirm the superior accuracy and stability of the new model framework in addressing bearing and gear faults within the realm of rotating machinery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助kkm采纳,获得10
刚刚
huaming完成签到,获得积分10
刚刚
要减肥完成签到,获得积分10
1秒前
TulIP完成签到,获得积分10
1秒前
可爱的函函应助yize采纳,获得10
1秒前
1秒前
浮游应助研友_ZzrWKZ采纳,获得10
1秒前
学术菜鸡123完成签到,获得积分10
1秒前
2秒前
生动的薯片完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
zhuzihao发布了新的文献求助10
2秒前
专注的问寒举报Vicky求助涉嫌违规
2秒前
领导范儿应助cknckn11采纳,获得10
2秒前
传奇3应助生动从菡采纳,获得150
3秒前
斯文败类应助Yanwenjun采纳,获得10
3秒前
3秒前
一颗滚石发布了新的文献求助10
3秒前
冬冬天赖完成签到,获得积分10
4秒前
4秒前
机灵书易发布了新的文献求助10
4秒前
4秒前
17712570999发布了新的文献求助10
5秒前
5秒前
5秒前
wtjhhh发布了新的文献求助10
7秒前
7秒前
烟花应助哈基汪采纳,获得10
7秒前
8秒前
LOTUS完成签到,获得积分20
8秒前
Lucas应助nl不分采纳,获得10
8秒前
Hello应助武武采纳,获得10
8秒前
妮妮发布了新的文献求助10
8秒前
小金完成签到,获得积分10
8秒前
zhuzihao完成签到,获得积分10
8秒前
小黄人发布了新的文献求助10
9秒前
9秒前
细腻小蜜蜂完成签到,获得积分10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619653
求助须知:如何正确求助?哪些是违规求助? 4704273
关于积分的说明 14927050
捐赠科研通 4760246
什么是DOI,文献DOI怎么找? 2550622
邀请新用户注册赠送积分活动 1513424
关于科研通互助平台的介绍 1474450