亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Low-Frequency Magnetotelluric Data Denoising Using Improved Denoising Convolutional Neural Network and Gated Recurrent Unit

降噪 卷积神经网络 计算机科学 模式识别(心理学) 大地电磁法 人工智能 单位(环理论) 噪音(视频) 人工神经网络 数据建模 数学 数据库 数学教育 工程类 电阻率和电导率 图像(数学) 电气工程
作者
Guang Li,Xianjie Gu,Chaojian Chen,Cong Zhou,Donghan Xiao,Wei Wan,Hongzhu Cai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:7
标识
DOI:10.1109/tgrs.2024.3374950
摘要

The magnetotelluric (MT) signals are susceptible to anthropogenic noise and the existing denoising methods have significant shortcomings in low-frequency situations. To address the problem, we propose an innovative denoising approach. It is different from the existing methods that attempt to achieve signal-noise separation through one step. The denoising process is divided into two steps in the proposed approach. The effective low-frequency dominant component and high-frequency component are sequentially extracted through deep learning and dictionary learning. We propose a new deep learning network named DnCNN-GRU which combines the powerful feature extraction capability of Denoising Convolutional Neural Network (DnCNN) and the strong temporal sequence processing ability of Gated Recurrent Unit (GRU), enabling accurate extraction of the low-frequency MT signal. Furthermore, we integrate this network with the K-Singular Value Decomposition (KSVD) dictionary learning to achieve accurately extraction of effective high-frequency components. Tests of synthetic data indicate that our method is the best compared to a series of state-of-the-art (SOTA) algorithms. It is the only method that can completely remove various types and scales of cultural noises while brilliantly preserves both the low and high-frequency signals. In addition, our method is validated on apparent resistivity and phase data and is significantly superior to the commonly used Robust estimation method. These results demonstrate that our method can solve the problem mentioned above and can be a substitute for Robust estimation or remote reference processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
12秒前
12秒前
16秒前
27秒前
体育爱好者完成签到,获得积分10
38秒前
lixia完成签到 ,获得积分10
42秒前
46秒前
46秒前
re发布了新的文献求助10
51秒前
传奇3应助man采纳,获得10
1分钟前
1分钟前
1分钟前
man发布了新的文献求助10
1分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
杳鸢应助科研通管家采纳,获得20
2分钟前
2分钟前
2分钟前
万默完成签到 ,获得积分10
2分钟前
2分钟前
子阅发布了新的文献求助10
2分钟前
2分钟前
钟可可发布了新的文献求助10
2分钟前
张桓完成签到,获得积分10
2分钟前
2分钟前
尼克11完成签到,获得积分10
2分钟前
NIKE112完成签到,获得积分10
3分钟前
3分钟前
3分钟前
欢喜怀绿发布了新的文献求助10
3分钟前
3分钟前
nonoNOSHEEP完成签到 ,获得积分10
3分钟前
peiyajing完成签到,获得积分10
3分钟前
大模型应助无私小土豆采纳,获得10
3分钟前
4分钟前
科研小白发布了新的文献求助10
4分钟前
JIEUN完成签到,获得积分10
4分钟前
杳鸢应助科研通管家采纳,获得20
4分钟前
4分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234546
求助须知:如何正确求助?哪些是违规求助? 2880887
关于积分的说明 8217265
捐赠科研通 2548495
什么是DOI,文献DOI怎么找? 1377786
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314