Low-Frequency Magnetotelluric Data Denoising Using Improved Denoising Convolutional Neural Network and Gated Recurrent Unit

降噪 卷积神经网络 计算机科学 模式识别(心理学) 大地电磁法 人工智能 单位(环理论) 噪音(视频) 人工神经网络 数据建模 数学 数据库 数学教育 工程类 电阻率和电导率 图像(数学) 电气工程
作者
Guang Li,Xianjie Gu,Chaojian Chen,Cong Zhou,Donghan Xiao,Wei Wan,Hongzhu Cai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:7
标识
DOI:10.1109/tgrs.2024.3374950
摘要

The magnetotelluric (MT) signals are susceptible to anthropogenic noise and the existing denoising methods have significant shortcomings in low-frequency situations. To address the problem, we propose an innovative denoising approach. It is different from the existing methods that attempt to achieve signal-noise separation through one step. The denoising process is divided into two steps in the proposed approach. The effective low-frequency dominant component and high-frequency component are sequentially extracted through deep learning and dictionary learning. We propose a new deep learning network named DnCNN-GRU which combines the powerful feature extraction capability of Denoising Convolutional Neural Network (DnCNN) and the strong temporal sequence processing ability of Gated Recurrent Unit (GRU), enabling accurate extraction of the low-frequency MT signal. Furthermore, we integrate this network with the K-Singular Value Decomposition (KSVD) dictionary learning to achieve accurately extraction of effective high-frequency components. Tests of synthetic data indicate that our method is the best compared to a series of state-of-the-art (SOTA) algorithms. It is the only method that can completely remove various types and scales of cultural noises while brilliantly preserves both the low and high-frequency signals. In addition, our method is validated on apparent resistivity and phase data and is significantly superior to the commonly used Robust estimation method. These results demonstrate that our method can solve the problem mentioned above and can be a substitute for Robust estimation or remote reference processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑暗之神发布了新的文献求助10
1秒前
2秒前
4秒前
RRR完成签到,获得积分10
4秒前
niulugai完成签到,获得积分10
5秒前
盈盈发布了新的文献求助10
6秒前
大Doctor陈发布了新的文献求助10
6秒前
爆米花应助郭小宝采纳,获得10
9秒前
落寞小熊猫完成签到,获得积分10
9秒前
充电宝应助哈哈哈哈哈采纳,获得10
10秒前
10秒前
小聂发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助20
11秒前
13秒前
桃铁完成签到,获得积分10
13秒前
wtt发布了新的文献求助10
15秒前
瑾年发布了新的文献求助10
16秒前
安安发布了新的文献求助10
19秒前
19秒前
小聂完成签到,获得积分10
19秒前
20秒前
华仔应助wtt采纳,获得10
21秒前
21秒前
orixero应助童童采纳,获得10
22秒前
22秒前
郭小宝发布了新的文献求助10
24秒前
25秒前
南涧居发布了新的文献求助40
25秒前
batman1999发布了新的文献求助10
26秒前
赘婿应助瑾年采纳,获得10
27秒前
酷酷小子发布了新的文献求助10
28秒前
CipherSage应助WANGSONGLU采纳,获得10
28秒前
moonbeam发布了新的文献求助10
28秒前
黑囡发布了新的文献求助10
31秒前
WUT发布了新的文献求助10
35秒前
ccc完成签到 ,获得积分10
38秒前
瑾年完成签到,获得积分10
40秒前
40秒前
狂野的微笑完成签到,获得积分10
41秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182