A thermal management control using particle swarm optimization for hybrid electric energy system of electric vehicles

行驶循环 电池(电) 质子交换膜燃料电池 粒子群优化 汽车工程 电动汽车 能源管理 航程(航空) 计算机科学 控制理论(社会学) 工程类 功率(物理) 能量(信号处理) 控制(管理) 燃料电池 算法 数学 人工智能 航空航天工程 物理 统计 量子力学 化学工程
作者
Yu-Hsuan Lin,Ming‐Tsang Lee,Yi-Hsuan Hung
出处
期刊:Results in engineering [Elsevier BV]
卷期号:21: 101717-101717 被引量:13
标识
DOI:10.1016/j.rineng.2023.101717
摘要

A metaheuristic algorithm, Particle Swarm Optimization (PSO), was employed for developing the optimal control strategies for an innovative hybrid thermal management system (IHTMS) in a proton exchange membrane fuel cell (PEMFC)/battery electric vehicles (EVs). The goals were to shorten the period of low-efficiency temperatures during the initial startup of EVs, and to maintain temperatures of PEMFCs and batteries at their optimal-efficiency zones, where significantly enhances the traveling range and power output of EVs. Prior to simulation for benefit analysis, eight IHTMS subsystems were mathematically constructed. For the multi-input-multi-output PSO control strategy, two inputs were the fuel cell and battery coolant temperatures; while two outputs were the coolant mass flow rate and the flow rate ratio between two energy sources. A rule-based (RB) control strategy for four actuators was designed as the baseline case. Another RB using the PSO to derive the initial conditions (PSOi) was developed as well. In this research, the IHTMS was tested under two driving patterns, WLTP and NEDC, where outstanding thermal management performance was exhibited. The results demonstrate that: in WLTP driving cycle, to compare PSO and PSOi-RB with the RB strategies, the rise time of optimal temperature decreased 13.655 % and 9.505 % for the PEMFC; while 8.77 % and 4.385 % for the battery. For the NEDC driving cycle, the rise time of optimal temperature decreased 8.908 % and 7.318 % for the PEMFC, while 5.226 % and 3.136 % for the battery. The improvements of average temperature errors of the PEMFC were 19.759 % and 11.023 %; the improvements of the average temperature errors of the battery were 57.027 % and 3.67 %. For NEDC driving cycle, the improvements of average temperature errors of the PEMFC were 18.879 % and 9.551 %; the improvements of the average temperature errors of the battery were 29.144 % and 20.221 %. In the future work, the IHTMS will be integrated to a hybrid-energy EV for experimental verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
zzzg完成签到,获得积分10
2秒前
缓慢冬天完成签到,获得积分10
3秒前
gyj1发布了新的文献求助10
5秒前
hqq发布了新的文献求助10
5秒前
小斌仔完成签到,获得积分10
7秒前
7秒前
moonlight完成签到,获得积分10
10秒前
完美世界应助轻松的采柳采纳,获得10
11秒前
天空中飞翔的鱼完成签到,获得积分10
11秒前
英俊的铭应助果实采纳,获得10
12秒前
明理的飞飞完成签到,获得积分10
12秒前
慕辰完成签到,获得积分10
12秒前
高公子完成签到 ,获得积分10
13秒前
hqq发布了新的文献求助10
13秒前
西风惊绿完成签到,获得积分10
14秒前
orixero应助疯子采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
兔兔不睡觉完成签到 ,获得积分10
16秒前
Owllight发布了新的文献求助10
17秒前
无聊的月饼完成签到 ,获得积分10
18秒前
regene完成签到,获得积分10
19秒前
CipherSage应助飘逸楷瑞采纳,获得20
21秒前
kedaya应助Aru采纳,获得50
21秒前
21秒前
寂静之声发布了新的文献求助20
21秒前
JamesPei应助秀丽的涫采纳,获得10
21秒前
星轨完成签到,获得积分10
22秒前
24秒前
完美世界应助果实采纳,获得10
25秒前
优美电脑完成签到,获得积分10
25秒前
MY999应助dmxywzw6采纳,获得30
25秒前
BIBIBI发布了新的文献求助10
25秒前
ding应助副掌门采纳,获得10
26秒前
霸气鞯完成签到 ,获得积分10
27秒前
烟花应助果实采纳,获得10
28秒前
29秒前
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150