A thermal management control using particle swarm optimization for hybrid electric energy system of electric vehicles

行驶循环 电池(电) 质子交换膜燃料电池 粒子群优化 汽车工程 电动汽车 能源管理 航程(航空) 计算机科学 控制理论(社会学) 工程类 功率(物理) 能量(信号处理) 控制(管理) 燃料电池 算法 数学 统计 物理 量子力学 化学工程 人工智能 航空航天工程
作者
Yu-Hsuan Lin,Ming‐Tsang Lee,Yi-Hsuan Hung
出处
期刊:Results in engineering [Elsevier]
卷期号:21: 101717-101717 被引量:13
标识
DOI:10.1016/j.rineng.2023.101717
摘要

A metaheuristic algorithm, Particle Swarm Optimization (PSO), was employed for developing the optimal control strategies for an innovative hybrid thermal management system (IHTMS) in a proton exchange membrane fuel cell (PEMFC)/battery electric vehicles (EVs). The goals were to shorten the period of low-efficiency temperatures during the initial startup of EVs, and to maintain temperatures of PEMFCs and batteries at their optimal-efficiency zones, where significantly enhances the traveling range and power output of EVs. Prior to simulation for benefit analysis, eight IHTMS subsystems were mathematically constructed. For the multi-input-multi-output PSO control strategy, two inputs were the fuel cell and battery coolant temperatures; while two outputs were the coolant mass flow rate and the flow rate ratio between two energy sources. A rule-based (RB) control strategy for four actuators was designed as the baseline case. Another RB using the PSO to derive the initial conditions (PSOi) was developed as well. In this research, the IHTMS was tested under two driving patterns, WLTP and NEDC, where outstanding thermal management performance was exhibited. The results demonstrate that: in WLTP driving cycle, to compare PSO and PSOi-RB with the RB strategies, the rise time of optimal temperature decreased 13.655 % and 9.505 % for the PEMFC; while 8.77 % and 4.385 % for the battery. For the NEDC driving cycle, the rise time of optimal temperature decreased 8.908 % and 7.318 % for the PEMFC, while 5.226 % and 3.136 % for the battery. The improvements of average temperature errors of the PEMFC were 19.759 % and 11.023 %; the improvements of the average temperature errors of the battery were 57.027 % and 3.67 %. For NEDC driving cycle, the improvements of average temperature errors of the PEMFC were 18.879 % and 9.551 %; the improvements of the average temperature errors of the battery were 29.144 % and 20.221 %. In the future work, the IHTMS will be integrated to a hybrid-energy EV for experimental verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
5秒前
kuoping完成签到,获得积分10
5秒前
6秒前
科幻画完成签到,获得积分10
6秒前
6秒前
7秒前
Radio发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
yar应助谨慎冷松采纳,获得10
10秒前
科幻画发布了新的文献求助10
11秒前
11秒前
xcc完成签到,获得积分10
11秒前
周星星发布了新的文献求助10
12秒前
xhz发布了新的文献求助10
12秒前
辣椒炒肉发布了新的文献求助10
12秒前
13秒前
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
小二郎应助科研通管家采纳,获得30
13秒前
laughingsir应助科研通管家采纳,获得30
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
Orange应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
可爱的函函应助iris采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
14秒前
馒头发布了新的文献求助10
15秒前
Gyro关注了科研通微信公众号
15秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412485
求助须知:如何正确求助?哪些是违规求助? 3015188
关于积分的说明 8868896
捐赠科研通 2702848
什么是DOI,文献DOI怎么找? 1481919
科研通“疑难数据库(出版商)”最低求助积分说明 685086
邀请新用户注册赠送积分活动 679733