医学
磁共振成像
工件(错误)
梅德林
系统回顾
科克伦图书馆
人工耳蜗植入
医学物理学
荟萃分析
人工耳蜗植入术
放射科
核医学
人工智能
病理
听力学
法学
计算机科学
政治学
作者
Joseph M. Berry,James B. Tansey,Lin Wu,Asim F. Choudhri,Robert J. Yawn,Charles B. MacDonald,C. Richard
出处
期刊:Otology & Neurotology
[Ovid Technologies (Wolters Kluwer)]
日期:2024-01-17
卷期号:45 (3): 204-214
标识
DOI:10.1097/mao.0000000000004095
摘要
Objective To conduct a systematic review of the existing literature with the aim of evaluating and consolidating the present understanding of strategies for mitigating magnetic resonance imaging (MRI) artifacts related to cochlear implants in adult and pediatric patients, covering both in-vivo and ex-vivo investigations. Data Sources A systematic review of MEDLINE-Ovid, Embase, Google Scholar, The Cochrane Library, and Scopus was performed from inception through April 2022. The protocol was registered with PROSPERO before commencement of data collection (CRD CRD42022319651). Review Methods The data were screened and collected by two authors independently, and eligibility was assessed according to Cochrane Handbook and Preferred Reporting Items for Systematic Review and Meta-Analysis recommendations, whereas the quality of the articles was evaluated using the NIH Study Quality Assessment. Results The search yielded 2,354 potentially relevant articles, of which 27 studies were included in the final review. Twelve studies looked at 1.5-T MRI, four studies looked at 3-T MRI, eight studies looked at both 1.5 and 3 T, one study looked at 0.2 and 1.5 T, and one study looked at 3- and 7.0-T MRI. Nineteen studies focused on MRI sequences as a means of artifact reduction, nine studies focused on implant magnet positioning, two studies focused on head positioning, and one study focused on both magnet and head positioning. In terms of MRI sequences, diffusion-weighted imaging produced larger artifacts compared with other sequences, whereas fast spin echo/turbo spin echo sequences and fat suppression techniques produced smaller artifacts. The position of the magnet was also found to be important, with a magnet position more than 6.5 cm posterior to the external auditory canal producing the best images with the least distortion. The angle at which the magnet is placed also affects visibility of different brain structures. Conclusion Proper head positioning, magnet placement at a distance of over 6.5 cm from the external auditory canal, use of spin echo sequences, and fat suppression techniques reduce the size and shape of MRI artifacts.
科研通智能强力驱动
Strongly Powered by AbleSci AI