已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Analytical Performance Specifications for Input Variables: Investigation of the Model of End-Stage Liver Disease

背景(考古学) 肝病 计算机科学 人口 集合(抽象数据类型) 统计 时间点 变化(天文学) 数据挖掘 数学 医学 内科学 生物 古生物学 哲学 环境卫生 程序设计语言 美学 物理 天体物理学
作者
E Andersen,Richard Röttger,Claus Lohman Brasen,Ivan Brandslund
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:70 (4): 653-659 被引量:1
标识
DOI:10.1093/clinchem/hvae019
摘要

Abstract Background Artificial intelligence models constitute specific uses of analysis results and, therefore, necessitate evaluation of analytical performance specifications (APS) for this context specifically. The Model of End-stage Liver Disease (MELD) is a clinical prediction model based on measurements of bilirubin, creatinine, and the international normalized ratio (INR). This study evaluates the propagation of error through the MELD, to inform choice of APS for the MELD input variables. Methods A total of 6093 consecutive MELD scores and underlying analysis results were retrospectively collected. “Desirable analytical variation” based on biological variation as well as current local analytical variation was simulated onto the data set as well as onto a constructed data set, representing a worst-case scenario. Resulting changes in MELD score and risk classification were calculated. Results Biological variation-based APS in the worst-case scenario resulted in 3.26% of scores changing by ≥1 MELD point. In the patient-derived data set, the same variation resulted in 0.92% of samples changing by ≥1 MELD point, and 5.5% of samples changing risk category. Local analytical performance resulted in lower reclassification rates. Conclusions Error propagation through MELD is complex and includes population-dependent mechanisms. Biological variation-derived APS were acceptable for all uses of the MELD score. Other combinations of APS can yield equally acceptable results. This analysis exemplifies how error propagation through artificial intelligence models can become highly complex. This complexity will necessitate that both model suppliers and clinical laboratories address analytical performance specifications for the specific use case, as these may differ from performance specifications for traditional use of the analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
星辰大海应助豆子采纳,获得10
4秒前
kobeycc完成签到,获得积分10
5秒前
小双发布了新的文献求助10
6秒前
lotus完成签到,获得积分10
9秒前
10秒前
jeep先生完成签到,获得积分10
13秒前
徐芳菲完成签到 ,获得积分10
16秒前
Zaleily完成签到,获得积分10
17秒前
19秒前
19秒前
20秒前
李爱国应助和谐的绮南采纳,获得10
21秒前
吴泽斌发布了新的文献求助10
22秒前
Akim应助科研小白采纳,获得10
23秒前
hp发布了新的文献求助20
23秒前
xiaoding应助芝吱芝吱采纳,获得10
23秒前
25秒前
搁浅发布了新的文献求助10
25秒前
白青发布了新的文献求助10
27秒前
syz发布了新的文献求助30
31秒前
吴泽斌完成签到,获得积分10
31秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
田様应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
完美世界应助科研通管家采纳,获得10
32秒前
上官若男应助科研通管家采纳,获得150
32秒前
慕青应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
wub完成签到 ,获得积分10
36秒前
37秒前
39秒前
韩十四发布了新的文献求助10
39秒前
白青完成签到,获得积分10
41秒前
42秒前
42秒前
42秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801512
关于积分的说明 7845255
捐赠科研通 2459095
什么是DOI,文献DOI怎么找? 1308964
科研通“疑难数据库(出版商)”最低求助积分说明 628618
版权声明 601727