Nonlinear weight learning model for incipient fault detection and degradation modelling and its interpretability for fault diagnosis

可解释性 降级(电信) 断层(地质) 非线性系统 故障检测与隔离 计算机科学 控制理论(社会学) 机器学习 人工智能 模式识别(心理学) 可靠性工程 工程类 物理 地质学 电信 控制(管理) 量子力学 地震学 执行机构
作者
Xiaochuan Li,Shengbing Zhen,Lanlin Yu,Zhe Yang,Chuan Li,David Mba
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:212: 111256-111256
标识
DOI:10.1016/j.ymssp.2024.111256
摘要

Optimization-based weight learning approaches that incorporate multiple sensor signals or vibration spectral components have demonstrated their effectiveness in monitoring mechanical systems. However, the current weight learning methods are limited by their reliance on linear fusion functions. The exploration of nonlinear link functions, particularly in the context of fusing spectral components in vibration spectra for health indices (HIs) construction, remains largely unexplored. Additionally, the development of formulas for interpreting HIs constructed using nonlinear fusion functions poses significant theoretical challenges. To address these limitations, this study proposes a novel nonlinear optimization-based weight learning model for constructing an HI that captures the nonlinear relationships among spectral components. This HI is designed to pinpoint fault characteristic frequencies while also highlighting other spectral lines associated with bearing degradation modelling. Furthermore, we derive formulas that enable the calculation of the contributions of frequency components to nonlinearly constructed HIs, thereby enhancing the interpretability of the model. By selecting an appropriate kernel function, subtle changes resulting from incipient faults and the underlying degradation process can be effectively captured. The effectiveness of the proposed model in detecting incipient faults, modelling degradation, and identifying fault types is validated through two run-to-failure case studies and a gearbox bearing experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到 ,获得积分10
刚刚
石幼蓉发布了新的文献求助10
刚刚
1秒前
所所应助喵喵喵喵喵采纳,获得10
2秒前
蓝灵发布了新的文献求助30
3秒前
3秒前
搜集达人应助钟博士采纳,获得10
4秒前
Jiang发布了新的文献求助10
5秒前
丘比特应助石幼蓉采纳,获得10
5秒前
sylviawj完成签到,获得积分10
6秒前
周什么园完成签到,获得积分10
6秒前
杰尼龟006完成签到,获得积分10
6秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
忘多发布了新的文献求助50
7秒前
Pepsi发布了新的文献求助10
12秒前
研友_VZG7GZ应助绯雨丶采纳,获得20
13秒前
我是老大应助翻译度采纳,获得10
13秒前
胖胖完成签到 ,获得积分0
13秒前
kk发布了新的文献求助10
14秒前
Jase发布了新的文献求助10
14秒前
Akinmide完成签到 ,获得积分10
15秒前
15秒前
李健应助gishisei采纳,获得10
16秒前
ZHI完成签到,获得积分10
16秒前
星辰大海应助sylviawj采纳,获得10
17秒前
观鹤轩完成签到 ,获得积分10
18秒前
19秒前
隐形秋完成签到,获得积分10
19秒前
若雨凌风应助asdadadad采纳,获得10
19秒前
ycc完成签到,获得积分10
20秒前
20秒前
Jase完成签到,获得积分10
21秒前
赘婿应助Aya采纳,获得10
22秒前
Serendipity完成签到,获得积分10
23秒前
小蘑菇应助kiguf采纳,获得10
23秒前
蓝灵完成签到,获得积分10
24秒前
wonder完成签到 ,获得积分10
25秒前
完美世界应助平淡盼旋采纳,获得10
27秒前
请叫我风吹麦浪应助kawad采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466427
求助须知:如何正确求助?哪些是违规求助? 3059206
关于积分的说明 9065452
捐赠科研通 2749686
什么是DOI,文献DOI怎么找? 1508697
科研通“疑难数据库(出版商)”最低求助积分说明 696996
邀请新用户注册赠送积分活动 696746