DipG-Seg: Fast and Accurate Double Image-Based Pixel-Wise Ground Segmentation

计算机科学 人工智能 分割 点云 预处理器 计算机视觉 像素 稳健性(进化) 激光雷达 图像分割 核(代数) 基于分割的对象分类 范围分割 尺度空间分割 模式识别(心理学) 遥感 地理 数学 基因 组合数学 生物化学 化学
作者
Hao Wen,Senyi Liu,Yuxin Liu,Chunhua Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5189-5200 被引量:1
标识
DOI:10.1109/tits.2023.3339334
摘要

Ground segmentation on the 3D point cloud is fundamental to many applications, such as SLAM and object segmentation. As it is usually a preprocessing module of these applications, high efficiency and accuracy are the basic requirements for guaranteeing the whole system's performance. To this end, we avoid ground fitting and region division on the 3D point cloud. We propose a pixel-wise image-based method named DipG-Seg, which projects the 3D point cloud onto two cylindrical images, horizontal range-and z-images, then segments based on them. To realize fast and accurate ground segmentation, we first introduce innovative designs for image-based features. Specifically, we improve the slope feature with consideration of the LiDAR model and propose combining features with different sizes of receptive fields for better recognition of the ground. Then, based on these features, we devise a pre-segmenting pattern for pixel-wise classification. For fine segmentation, we devise a hierarchical refinement framework integrating a nonlinear filter and majority-vote kernel-based convolution, which is demonstrated to enhance the accuracy by over 7% on the basis of pre-segmenting. Comprehensive experiments were conducted on a real-world platform, SemanticKITTI, and nuScenes datasets. The results have demonstrated that our method can achieve an accuracy of 94.41% and a speed of 127 Hz on 64-beams LiDAR, outperforming the state-of-the-art methods and guaranteeing competitive robustness. Our method will be available at: https://github.com/EEPT-LAB/DipG-Seg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xinxxx发布了新的文献求助10
刚刚
刚刚
喜悦的绮露完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
LX完成签到,获得积分10
2秒前
棋棋233完成签到,获得积分20
3秒前
所所应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
Dayton完成签到,获得积分10
4秒前
小芳应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
iedq完成签到 ,获得积分10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得200
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
zhang26xian完成签到,获得积分10
5秒前
huo应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
ding应助科研通管家采纳,获得30
6秒前
6秒前
搞怪柔完成签到,获得积分10
7秒前
苗广山发布了新的文献求助10
7秒前
Florencia发布了新的文献求助10
7秒前
kuroxi完成签到,获得积分10
7秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308852
求助须知:如何正确求助?哪些是违规求助? 2942301
关于积分的说明 8507956
捐赠科研通 2617252
什么是DOI,文献DOI怎么找? 1430026
科研通“疑难数据库(出版商)”最低求助积分说明 663984
邀请新用户注册赠送积分活动 649215