微电网
强化学习
经济调度
马尔可夫决策过程
区间(图论)
数学优化
计算机科学
理论(学习稳定性)
马尔可夫过程
风力发电
功率(物理)
电力系统
工程类
人工智能
数学
控制(管理)
机器学习
统计
组合数学
电气工程
物理
量子力学
作者
Chaoxu Mu,Yakun Shi,Na Xu,Xinying Wang,Zhuo Tang,Hongjie Jia,Hua Geng
出处
期刊:IEEE Transactions on Smart Grid
[Institute of Electrical and Electronics Engineers]
日期:2024-05-01
卷期号:15 (3): 2957-2970
被引量:5
标识
DOI:10.1109/tsg.2023.3339541
摘要
This paper presents an improved deep reinforcement learning (DRL) algorithm for solving the optimal dispatch of microgrids under uncertaintes. First, a multi-objective interval optimization dispatch (MIOD) model for microgrids is constructed, in which the uncertain power output of wind and photovoltaic (PV) is represented by interval variables. The economic cost, network loss, and branch stability index for microgrids are also optimized. The interval optimization is modeled as a Markov decision process (MDP). Then, an improved DRL algorithm called triplet-critics comprehensive experience replay soft actor-critic (TCSAC) is proposed to solve it. Finally, simulation results of the modified IEEE 118-bus microgrid validate the effectiveness of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI