已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sequential Optimal Experimental Design of Perturbation Screens Guided by Multi-modal Priors

计算机科学 先验概率 忠诚 摄动(天文学) 机器学习 人工智能 贝叶斯概率 电信 物理 量子力学
作者
Kexin Huang,Romain Lopez,Jan-Christian Hütter,Takamasa Kudo,Antonio Ríos,Aviv Regev
标识
DOI:10.1101/2023.12.12.571389
摘要

Abstract Understanding a cell’s expression response to genetic perturbations helps to address important challenges in biology and medicine, including the function of gene circuits, discovery of therapeutic targets and cell reprogramming and engineering. In recent years, Perturb-seq, pooled genetic screens with single cell RNA-seq (scRNA-seq) readouts, has emerged as a common method to collect such data. However, irrespective of technological advances, because combinations of gene perturbations can have unpredictable, non-additive effects, the number of experimental configurations far exceeds experimental capacity, and for certain cases, the number of available cells. While recent machine learning models, trained on existing Perturb-seq data sets, can predict perturbation outcomes with some degree of accuracy, they are currently limited by sub-optimal training set selection and the small number of cell contexts of training data, leading to poor predictions for unexplored parts of perturbation space. As biologists deploy Perturb-seq across diverse biological systems, there is an enormous need for algorithms to guide iterative experiments while exploring the large space of possible perturbations and their combinations. Here, we propose a sequential approach for designing Perturb-seq experiments that uses the model to strategically select the most informative perturbations at each step for subsequent experiments. This enables a significantly more efficient exploration of the perturbation space, while predicting the effect of the rest of the unseen perturbations with high-fidelity. Analysis of a previous large-scale Perturb-seq experiment reveals that our setting is severely restricted by the number of examples and rounds, falling into a non-conventional active learning regime called “active learning on a budget”. Motivated by this insight, we develop I ter P ert , a novel active learning method that exploits rich and multi-modal prior knowledge in order to efficiently guide the selection of subsequent perturbations. Using prior knowledge for this task is novel, and crucial for successful active learning on a budget. We validate I ter P ert using insilico benchmarking of active learning, constructed from a large-scale CRISPRi Perturb-seq data set. We find that I ter P ert outperforms other active learning strategies by reaching comparable accuracy at only a third of the number of perturbations profiled as the next best method. Overall, our results demonstrate the potential of sequentially designing perturbation screens through I ter P ert .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
科研通AI6应助marcg4采纳,获得10
3秒前
在水一方应助过时的笙采纳,获得10
4秒前
杨东旭完成签到,获得积分20
4秒前
5秒前
谐音梗别扣钱完成签到 ,获得积分10
6秒前
qingmoheng应助Chat采纳,获得10
6秒前
SciKid524完成签到 ,获得积分10
7秒前
agf发布了新的文献求助30
7秒前
铭铭完成签到 ,获得积分10
7秒前
Frog完成签到,获得积分10
8秒前
杨东旭发布了新的文献求助10
8秒前
逮劳完成签到 ,获得积分10
8秒前
cc完成签到 ,获得积分10
8秒前
Owen应助juqiu采纳,获得10
10秒前
酷波er应助juqiu采纳,获得10
10秒前
烟花应助juqiu采纳,获得10
11秒前
一只西瓜茶完成签到,获得积分20
11秒前
充电宝应助无奈曼云采纳,获得10
13秒前
脱锦涛完成签到 ,获得积分10
14秒前
领导范儿应助Frog采纳,获得10
16秒前
18秒前
nnmmuu完成签到,获得积分10
18秒前
浮浮世世完成签到,获得积分10
19秒前
Jim完成签到,获得积分10
20秒前
十一完成签到 ,获得积分10
22秒前
丰富的谷菱完成签到,获得积分10
23秒前
xyyyy完成签到 ,获得积分10
23秒前
池木完成签到 ,获得积分10
23秒前
利好完成签到 ,获得积分10
24秒前
不学习的牛蛙完成签到 ,获得积分10
25秒前
NexusExplorer应助GQ采纳,获得10
26秒前
26秒前
于涵艺完成签到,获得积分10
29秒前
30秒前
无知者海生完成签到 ,获得积分10
30秒前
31秒前
31秒前
飞快的孱完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587212
关于积分的说明 14413030
捐赠科研通 4518471
什么是DOI,文献DOI怎么找? 2475801
邀请新用户注册赠送积分活动 1461397
关于科研通互助平台的介绍 1434283