Sequential Optimal Experimental Design of Perturbation Screens Guided by Multi-modal Priors

计算机科学 先验概率 忠诚 摄动(天文学) 机器学习 人工智能 贝叶斯概率 电信 物理 量子力学
作者
Kexin Huang,Romain Lopez,Jan-Christian Hütter,Takamasa Kudo,Antonio Ríos,Aviv Regev
标识
DOI:10.1101/2023.12.12.571389
摘要

Abstract Understanding a cell’s expression response to genetic perturbations helps to address important challenges in biology and medicine, including the function of gene circuits, discovery of therapeutic targets and cell reprogramming and engineering. In recent years, Perturb-seq, pooled genetic screens with single cell RNA-seq (scRNA-seq) readouts, has emerged as a common method to collect such data. However, irrespective of technological advances, because combinations of gene perturbations can have unpredictable, non-additive effects, the number of experimental configurations far exceeds experimental capacity, and for certain cases, the number of available cells. While recent machine learning models, trained on existing Perturb-seq data sets, can predict perturbation outcomes with some degree of accuracy, they are currently limited by sub-optimal training set selection and the small number of cell contexts of training data, leading to poor predictions for unexplored parts of perturbation space. As biologists deploy Perturb-seq across diverse biological systems, there is an enormous need for algorithms to guide iterative experiments while exploring the large space of possible perturbations and their combinations. Here, we propose a sequential approach for designing Perturb-seq experiments that uses the model to strategically select the most informative perturbations at each step for subsequent experiments. This enables a significantly more efficient exploration of the perturbation space, while predicting the effect of the rest of the unseen perturbations with high-fidelity. Analysis of a previous large-scale Perturb-seq experiment reveals that our setting is severely restricted by the number of examples and rounds, falling into a non-conventional active learning regime called “active learning on a budget”. Motivated by this insight, we develop I ter P ert , a novel active learning method that exploits rich and multi-modal prior knowledge in order to efficiently guide the selection of subsequent perturbations. Using prior knowledge for this task is novel, and crucial for successful active learning on a budget. We validate I ter P ert using insilico benchmarking of active learning, constructed from a large-scale CRISPRi Perturb-seq data set. We find that I ter P ert outperforms other active learning strategies by reaching comparable accuracy at only a third of the number of perturbations profiled as the next best method. Overall, our results demonstrate the potential of sequentially designing perturbation screens through I ter P ert .

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ycy发布了新的文献求助10
1秒前
1秒前
隐形曼青应助Darius采纳,获得10
1秒前
lxr8900发布了新的文献求助10
1秒前
shisong发布了新的文献求助10
2秒前
Zstuzzy发布了新的文献求助10
3秒前
ycc发布了新的文献求助10
3秒前
4秒前
归去来兮完成签到,获得积分10
4秒前
ziwei发布了新的文献求助30
5秒前
脑洞疼应助lxr8900采纳,获得10
5秒前
cc发布了新的文献求助10
6秒前
7秒前
美好向日葵完成签到,获得积分10
7秒前
7秒前
9秒前
安德森先生完成签到,获得积分10
11秒前
12秒前
大院的鸭发布了新的文献求助10
12秒前
heyi发布了新的文献求助10
13秒前
13秒前
迅速不二完成签到,获得积分10
14秒前
生椰拿铁完成签到 ,获得积分10
14秒前
小朱同学发布了新的文献求助10
15秒前
情怀应助ziwei采纳,获得10
15秒前
璐璐发布了新的文献求助10
16秒前
华仔应助still采纳,获得10
16秒前
研友_5Zl9D8发布了新的文献求助10
16秒前
夏蓉完成签到,获得积分10
17秒前
小二郎应助尊敬的发夹采纳,获得10
18秒前
18秒前
19秒前
25毕业发布了新的文献求助10
20秒前
Ava应助zz采纳,获得10
20秒前
20秒前
Guo发布了新的文献求助10
22秒前
科研顺利完成签到,获得积分10
23秒前
lxr8900发布了新的文献求助10
24秒前
一一发布了新的文献求助10
25秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416055
求助须知:如何正确求助?哪些是违规求助? 3017751
关于积分的说明 8882444
捐赠科研通 2705345
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685751
邀请新用户注册赠送积分活动 680771