Nanocrystalline Composite Layer Realized by Simple Sintering Without Surface Treatment, Reducing Hydrophilicity and Increasing Thermal Conductivity

材料科学 纳米晶材料 烧结 热导率 复合数 陶瓷 复合材料 无定形固体 相(物质) 图层(电子) 化学工程 纳米技术 结晶学 有机化学 化学 工程类
作者
Hyun‐Ae Cha,Sang Keun Ha,Hye‐Jeong Jang,Byeong‐Min Ahn,Young Kook Moon,Jung‐Hwan Kim,Joon‐Hwan Choi,Byung‐Dong Hahn,Sungjun Han,Jun Lim,Docheon Ahn,Inchul Jung,Kyung‐Hoon Cho,Do Kyung Kim,Jae Chul Kim,Cheol‐Woo Ahn
出处
期刊:Small methods [Wiley]
被引量:1
标识
DOI:10.1002/smtd.202300969
摘要

Abstract The surface treatment for a polymer‐ceramic composite is additionally performed in advanced material industries. To prepare the composite without a surface treatment, the simplest way to manufacture an advanced ceramic‐particle is devised. The method is the formation of a nanocrystalline composite layer through the simple liquid‐phase sintering. Using magnesia (MgO) which shows hydrophilicity, a nanocrystalline surface layer is realized by liquid‐phase sintering. The amorphous matrix of nanocrystalline composite layer makes MgO hydrophobic and ensures miscibility with polymers, and the nanocrystalline MgO ensures high thermal conductivity. In addition, the liquid phase removes the open pores and makes the surface morphology smooth MgO with smooth surface (MgO‐SM). Thermal interface materials (TIM) prepared with MgO‐SM and epoxy show a high thermal conductivity of ≈7.5 W m −1 K −1 , which is significantly higher than 4.5 W m −1 K −1 of pure MgO TIM. Consequently, the formation process of a nanocrystalline surface layer utilizing simple liquid‐phase sintering is proposed as a fabrication method for a next‐generation ceramic‐filler. In addition, it is fundamentally identified that the thermal conductivity of MgO depends on the Mg deficiency, and therefore a poly‐crystal MgO‐SM (produced at a low temperature) has a higher thermal conductivity than a single‐crystal MgO (produced at a high temperature).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
m3发布了新的文献求助10
1秒前
huahua完成签到 ,获得积分10
1秒前
456完成签到,获得积分10
3秒前
ruanyh发布了新的文献求助10
3秒前
Li发布了新的文献求助20
3秒前
Sir.夏季风发布了新的文献求助20
3秒前
隐形曼青应助lkl采纳,获得10
4秒前
共享精神应助淡定的如容采纳,获得10
4秒前
搜集达人应助overThat采纳,获得10
4秒前
4秒前
5秒前
创创完成签到,获得积分10
5秒前
kilion发布了新的文献求助20
5秒前
6秒前
6秒前
6秒前
科研通AI2S应助啦啦啦采纳,获得10
6秒前
活力雁枫发布了新的文献求助30
7秒前
风懒懒完成签到,获得积分10
7秒前
7秒前
努力的宝汁完成签到 ,获得积分10
7秒前
7秒前
不要再忘登陆密码了完成签到,获得积分10
8秒前
脑洞疼应助WZJ采纳,获得10
8秒前
阿钉发布了新的文献求助10
8秒前
空空发布了新的文献求助10
9秒前
邹大亮发布了新的文献求助10
9秒前
ccc关注了科研通微信公众号
11秒前
11秒前
跳跃尔琴发布了新的文献求助10
11秒前
dophin应助zzj采纳,获得10
11秒前
11秒前
11秒前
酸梅汤完成签到,获得积分10
12秒前
小Z顺利毕业完成签到,获得积分10
12秒前
sunny完成签到,获得积分20
12秒前
77完成签到,获得积分20
13秒前
伏黑完成签到 ,获得积分10
13秒前
陈文娜完成签到,获得积分10
13秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082120
求助须知:如何正确求助?哪些是违规求助? 2735209
关于积分的说明 7536620
捐赠科研通 2384906
什么是DOI,文献DOI怎么找? 1264519
科研通“疑难数据库(出版商)”最低求助积分说明 612673
版权声明 597623