Noise-robust adaptive feature mode decomposition method for accurate feature extraction in rotating machinery fault diagnosis

噪音(视频) 稳健性(进化) 模式识别(心理学) 初始化 断层(地质) 控制理论(社会学) 人工智能 计算机科学 特征提取 振动 降噪 工程类 声学 物理 地质学 地震学 图像(数学) 生物化学 化学 控制(管理) 基因 程序设计语言
作者
Yuyang Chen,Zhiwei Mao,Xiuqun Hou,Zhaoguang Zhang,Jinjie Zhang,Zhinong Jiang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:211: 111213-111213 被引量:11
标识
DOI:10.1016/j.ymssp.2024.111213
摘要

Rotating machinery typically consists of multiple rotating components, and its fault signals contain not only periodic impulse components caused by local defects but also periodic noise components generated by the normal operation of other rotating parts. Especially in the case of compound faults, the vibration signals exhibit the characteristics of simultaneous coupling of multiple periodic components and multiple pulse components, greatly affecting the accuracy of compound fault diagnosis. In order to accurately separate and extract individual fault components from the rotating machinery's compound fault signals under strong periodic noise interference, this paper proposes a noise-robust adaptive feature mode decomposition method for compound fault diagnosis in rotating machinery. In addressing the challenge of existing decomposition methods, which heavily rely on accurate fault period estimation and initialization of decomposition number, an efficient strategy has been developed within the proposed method. This strategy remains effective even under intense periodic disturbances by accurately pinpointing the resonance bands induced by faults. It simultaneously acquires the essential prior knowledge necessary for mode decomposition, resolving the issue of prevailing fault period estimation methods being prone to failure in the presence of strong periodic noise. Furthermore, a feature mode decomposition method with the second-order indicators of cyclostationarity as the objective function is introduced. This, coupled with the devised parameter optimization strategy, facilitates precise decomposition of compound fault components in the presence of strong periodic noise. Finally, the robustness of the proposed method against periodic noise and its outstanding ability to extract compound fault features undergo validation through simulations and experiments, highlighting its potential for advancement in the field of rotating machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
qianyuan发布了新的文献求助10
1秒前
3秒前
3秒前
Zyz发布了新的文献求助10
3秒前
TALE完成签到,获得积分10
3秒前
科研通AI5应助努力的长安采纳,获得30
4秒前
hyf完成签到,获得积分10
4秒前
尉迟如音完成签到,获得积分10
5秒前
LLL发布了新的文献求助10
6秒前
7秒前
失眠水壶发布了新的文献求助10
7秒前
li发布了新的文献求助10
8秒前
bkagyin应助独特的寇采纳,获得10
8秒前
8秒前
zc发布了新的文献求助10
8秒前
科研小白完成签到,获得积分10
10秒前
bob完成签到,获得积分10
11秒前
张若旸发布了新的文献求助10
12秒前
研友_柳乌完成签到,获得积分20
13秒前
初识完成签到,获得积分10
14秒前
阝火火发布了新的文献求助10
14秒前
qianyuan发布了新的文献求助10
15秒前
15秒前
15秒前
hswhswqkdh应助TNNTDS采纳,获得10
16秒前
16秒前
17秒前
18秒前
Jj7发布了新的文献求助10
19秒前
19秒前
姑姑卡发布了新的文献求助10
20秒前
21秒前
老王发布了新的文献求助10
21秒前
大个应助alooof采纳,获得10
21秒前
失眠水壶完成签到,获得积分10
21秒前
竹马子发布了新的文献求助10
22秒前
22秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773255
求助须知:如何正确求助?哪些是违规求助? 3318866
关于积分的说明 10191908
捐赠科研通 3033468
什么是DOI,文献DOI怎么找? 1664436
邀请新用户注册赠送积分活动 796239
科研通“疑难数据库(出版商)”最低求助积分说明 757334