Noise-robust adaptive feature mode decomposition method for accurate feature extraction in rotating machinery fault diagnosis

噪音(视频) 稳健性(进化) 模式识别(心理学) 初始化 断层(地质) 控制理论(社会学) 人工智能 计算机科学 降噪 工程类 地质学 程序设计语言 基因 控制(管理) 化学 生物化学 地震学 图像(数学)
作者
Yuyang Chen,Zhiwei Mao,Xiuqun Hou,Zhaoguang Zhang,Jinjie Zhang,Zhinong Jiang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:211: 111213-111213 被引量:6
标识
DOI:10.1016/j.ymssp.2024.111213
摘要

Rotating machinery typically consists of multiple rotating components, and its fault signals contain not only periodic impulse components caused by local defects but also periodic noise components generated by the normal operation of other rotating parts. Especially in the case of compound faults, the vibration signals exhibit the characteristics of simultaneous coupling of multiple periodic components and multiple pulse components, greatly affecting the accuracy of compound fault diagnosis. In order to accurately separate and extract individual fault components from the rotating machinery's compound fault signals under strong periodic noise interference, this paper proposes a noise-robust adaptive feature mode decomposition method for compound fault diagnosis in rotating machinery. In addressing the challenge of existing decomposition methods, which heavily rely on accurate fault period estimation and initialization of decomposition number, an efficient strategy has been developed within the proposed method. This strategy remains effective even under intense periodic disturbances by accurately pinpointing the resonance bands induced by faults. It simultaneously acquires the essential prior knowledge necessary for mode decomposition, resolving the issue of prevailing fault period estimation methods being prone to failure in the presence of strong periodic noise. Furthermore, a feature mode decomposition method with the second-order indicators of cyclostationarity as the objective function is introduced. This, coupled with the devised parameter optimization strategy, facilitates precise decomposition of compound fault components in the presence of strong periodic noise. Finally, the robustness of the proposed method against periodic noise and its outstanding ability to extract compound fault features undergo validation through simulations and experiments, highlighting its potential for advancement in the field of rotating machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助大贺呀采纳,获得10
刚刚
bkagyin应助aaron采纳,获得10
4秒前
4秒前
5秒前
想吃泡芙完成签到 ,获得积分10
6秒前
7秒前
eyou发布了新的文献求助10
10秒前
大贺呀发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
lily88发布了新的文献求助10
16秒前
16秒前
16秒前
科研通AI2S应助飘柔采纳,获得10
18秒前
今后应助满姣采纳,获得10
19秒前
科研通AI2S应助满姣采纳,获得10
19秒前
爆米花应助满姣采纳,获得10
19秒前
大模型应助满姣采纳,获得10
19秒前
Akim应助满姣采纳,获得10
19秒前
20秒前
汉堡包应助www采纳,获得10
21秒前
大个应助chrissylaiiii采纳,获得10
22秒前
22秒前
ZLY完成签到 ,获得积分10
23秒前
23秒前
lilin发布了新的文献求助10
23秒前
DavidLiu发布了新的文献求助10
24秒前
走心关注了科研通微信公众号
24秒前
24秒前
大贺呀完成签到,获得积分10
24秒前
殷勤柠檬完成签到,获得积分10
27秒前
28秒前
无花果应助Soleil采纳,获得10
29秒前
DT发布了新的文献求助10
29秒前
29秒前
殷勤柠檬发布了新的文献求助10
30秒前
wangjing完成签到,获得积分10
30秒前
Sevi完成签到,获得积分10
30秒前
羊羽发布了新的文献求助200
31秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142206
求助须知:如何正确求助?哪些是违规求助? 2793191
关于积分的说明 7805737
捐赠科研通 2449467
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626821
版权声明 601291