Noise-robust adaptive feature mode decomposition method for accurate feature extraction in rotating machinery fault diagnosis

噪音(视频) 稳健性(进化) 模式识别(心理学) 初始化 断层(地质) 控制理论(社会学) 人工智能 计算机科学 特征提取 振动 降噪 工程类 声学 物理 地质学 地震学 图像(数学) 生物化学 化学 控制(管理) 基因 程序设计语言
作者
Yuyang Chen,Zhiwei Mao,Xiuqun Hou,Zhaoguang Zhang,Jinjie Zhang,Zhinong Jiang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:211: 111213-111213 被引量:35
标识
DOI:10.1016/j.ymssp.2024.111213
摘要

Rotating machinery typically consists of multiple rotating components, and its fault signals contain not only periodic impulse components caused by local defects but also periodic noise components generated by the normal operation of other rotating parts. Especially in the case of compound faults, the vibration signals exhibit the characteristics of simultaneous coupling of multiple periodic components and multiple pulse components, greatly affecting the accuracy of compound fault diagnosis. In order to accurately separate and extract individual fault components from the rotating machinery's compound fault signals under strong periodic noise interference, this paper proposes a noise-robust adaptive feature mode decomposition method for compound fault diagnosis in rotating machinery. In addressing the challenge of existing decomposition methods, which heavily rely on accurate fault period estimation and initialization of decomposition number, an efficient strategy has been developed within the proposed method. This strategy remains effective even under intense periodic disturbances by accurately pinpointing the resonance bands induced by faults. It simultaneously acquires the essential prior knowledge necessary for mode decomposition, resolving the issue of prevailing fault period estimation methods being prone to failure in the presence of strong periodic noise. Furthermore, a feature mode decomposition method with the second-order indicators of cyclostationarity as the objective function is introduced. This, coupled with the devised parameter optimization strategy, facilitates precise decomposition of compound fault components in the presence of strong periodic noise. Finally, the robustness of the proposed method against periodic noise and its outstanding ability to extract compound fault features undergo validation through simulations and experiments, highlighting its potential for advancement in the field of rotating machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lu完成签到,获得积分10
2秒前
2秒前
Hanoi347应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Hanoi347应助科研通管家采纳,获得10
6秒前
雨姐科研应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
雨姐科研应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
李洪卓发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
雨姐科研应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
落尘府发布了新的文献求助30
8秒前
佛砸Inter完成签到,获得积分10
11秒前
Youdge完成签到,获得积分10
15秒前
16秒前
科研通AI6应助葱葱采纳,获得10
16秒前
李洪卓完成签到,获得积分10
16秒前
Ellen完成签到 ,获得积分10
17秒前
xiaojie发布了新的文献求助10
19秒前
你好完成签到 ,获得积分10
19秒前
舒心飞珍完成签到,获得积分10
21秒前
质延完成签到 ,获得积分10
23秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560339
求助须知:如何正确求助?哪些是违规求助? 4645494
关于积分的说明 14675277
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915