Noise-robust adaptive feature mode decomposition method for accurate feature extraction in rotating machinery fault diagnosis

噪音(视频) 稳健性(进化) 模式识别(心理学) 初始化 断层(地质) 控制理论(社会学) 人工智能 计算机科学 特征提取 振动 降噪 工程类 声学 物理 地质学 地震学 图像(数学) 生物化学 化学 控制(管理) 基因 程序设计语言
作者
Yuyang Chen,Zhiwei Mao,Xiuqun Hou,Zhaoguang Zhang,Jinjie Zhang,Zhinong Jiang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:211: 111213-111213 被引量:10
标识
DOI:10.1016/j.ymssp.2024.111213
摘要

Rotating machinery typically consists of multiple rotating components, and its fault signals contain not only periodic impulse components caused by local defects but also periodic noise components generated by the normal operation of other rotating parts. Especially in the case of compound faults, the vibration signals exhibit the characteristics of simultaneous coupling of multiple periodic components and multiple pulse components, greatly affecting the accuracy of compound fault diagnosis. In order to accurately separate and extract individual fault components from the rotating machinery's compound fault signals under strong periodic noise interference, this paper proposes a noise-robust adaptive feature mode decomposition method for compound fault diagnosis in rotating machinery. In addressing the challenge of existing decomposition methods, which heavily rely on accurate fault period estimation and initialization of decomposition number, an efficient strategy has been developed within the proposed method. This strategy remains effective even under intense periodic disturbances by accurately pinpointing the resonance bands induced by faults. It simultaneously acquires the essential prior knowledge necessary for mode decomposition, resolving the issue of prevailing fault period estimation methods being prone to failure in the presence of strong periodic noise. Furthermore, a feature mode decomposition method with the second-order indicators of cyclostationarity as the objective function is introduced. This, coupled with the devised parameter optimization strategy, facilitates precise decomposition of compound fault components in the presence of strong periodic noise. Finally, the robustness of the proposed method against periodic noise and its outstanding ability to extract compound fault features undergo validation through simulations and experiments, highlighting its potential for advancement in the field of rotating machinery fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leon发布了新的文献求助10
刚刚
axunQAQ发布了新的文献求助10
刚刚
111发布了新的文献求助10
1秒前
2秒前
cc发布了新的文献求助10
5秒前
程勋航完成签到,获得积分10
5秒前
HH完成签到,获得积分10
5秒前
陆千万完成签到,获得积分10
7秒前
我是125应助老疯智采纳,获得10
7秒前
LEE发布了新的文献求助10
7秒前
Leon完成签到,获得积分10
10秒前
愉快的紫丝完成签到,获得积分10
10秒前
12秒前
玩命的紫南完成签到 ,获得积分10
13秒前
13秒前
13秒前
剁辣椒蒸鱼头完成签到 ,获得积分10
15秒前
牛牛要当院士喽完成签到,获得积分10
15秒前
15秒前
香蕉觅云应助lyt采纳,获得10
16秒前
WJ发布了新的文献求助10
17秒前
18秒前
dbq完成签到 ,获得积分10
18秒前
Owen应助reck采纳,获得10
20秒前
王淳完成签到 ,获得积分10
20秒前
21秒前
22秒前
高高的天亦完成签到 ,获得积分10
23秒前
追寻书白完成签到,获得积分20
24秒前
晚街听风完成签到 ,获得积分10
25秒前
25秒前
感觉他香香的完成签到 ,获得积分10
26秒前
26秒前
牛牛要当院士喽完成签到,获得积分10
26秒前
结实的老虎完成签到,获得积分10
28秒前
坚强丹雪完成签到,获得积分10
30秒前
32秒前
34秒前
WZ0904发布了新的文献求助10
36秒前
狂野静曼完成签到 ,获得积分10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849