清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A deep learning and image enhancement based pipeline for infrared and visible image fusion

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 深度学习 图像融合 分类器(UML) 计算机视觉 基本事实 融合 转化(遗传学) 图像(数学) 哲学 语言学 生物化学 化学 基因
作者
Jin Qi,Deboch Eyob Abera,Mola Natnael Fanose,Lingfeng Wang,Jun Cheng
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:578: 127353-127353
标识
DOI:10.1016/j.neucom.2024.127353
摘要

It is difficult to use supervised machine-learning methods for infrared (IR) and visible (VIS) image fusion (IVF) because of the shortage of ground-truth target fusion images, and image quality and contrast control are rarely considered in existing IVF methods. In this study, we proposed a simple IVF pipeline that converts the IVF problem into a supervised binary classification problem (sharp vs. blur) and uses image enhancement techniques to improve the image quality in three locations in the pipeline. We took a biological vision consistent assumption that the sharp region contains more useful information than the blurred region. A deep binary classifier based on a convolutional neural network (CNN) was designed to compare the sharpness of the infrared region and visible regions. The output score map of the deep classifier was treated as a weight map in the weighted average fusion rule. The proposed deep binary classifier was trained using natural visible images from the MS COCO dataset, rather than images from the IVF domain (called "cross domain training" here). Specifically, our proposed pipeline contains four stages: (1) enhancing the IR and VIS input images by linear transformation and the High-Dynamic-Range Compression (HDRC) method, respectively; (2) inputting the enhanced IR and VIS images to the trained CNN classifier to obtain the weight map; and (3) using a weight map to obtain the weighted average of the enhanced IR and VIS images; and (4) using single scale Retinex (SSR) to enhance the fused image to obtain the final enhanced fusion image. Extensive experimental results on public IVF datasets demonstrate the superior performance of our proposed approach over other state-of-the-art methods in terms of both subjective visual quality and 11 objective metrics. It was demonstrated that the complementary information between the infrared and visible images can be efficiently extracted using our proposed binary classifier, and the fused image quality is significantly improved. The source code is available at https://github.com/eyob12/Deep_infrared_and_visible_image_fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
lb001完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
creep2020完成签到,获得积分10
26秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
开心每一天完成签到 ,获得积分10
55秒前
rockyshi完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助舒适以松采纳,获得10
1分钟前
搞怪莫茗发布了新的文献求助10
1分钟前
不再挨训完成签到 ,获得积分10
1分钟前
1分钟前
斯尼奇完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
斯尼奇发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
Yjj发布了新的文献求助10
2分钟前
可夫司机完成签到 ,获得积分10
2分钟前
田田完成签到 ,获得积分10
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
包容的剑完成签到 ,获得积分10
2分钟前
Liufgui应助乏味采纳,获得30
3分钟前
量子星尘发布了新的文献求助30
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
顺利问玉完成签到 ,获得积分10
3分钟前
舒适以松发布了新的文献求助10
3分钟前
4分钟前
饱满的新之完成签到 ,获得积分10
4分钟前
clock完成签到 ,获得积分10
4分钟前
huanghe完成签到,获得积分10
4分钟前
偷得浮生半日闲完成签到,获得积分10
4分钟前
4分钟前
球球应助Yjj采纳,获得10
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015400
求助须知:如何正确求助?哪些是违规求助? 3555341
关于积分的说明 11317993
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812000