A deep learning and image enhancement based pipeline for infrared and visible image fusion

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 深度学习 图像融合 分类器(UML) 计算机视觉 基本事实 融合 转化(遗传学) 图像(数学) 哲学 语言学 生物化学 化学 基因
作者
Jin Qi,Deboch Eyob Abera,Mola Natnael Fanose,Lingfeng Wang,Jun Cheng
出处
期刊:Neurocomputing [Elsevier]
卷期号:578: 127353-127353
标识
DOI:10.1016/j.neucom.2024.127353
摘要

It is difficult to use supervised machine-learning methods for infrared (IR) and visible (VIS) image fusion (IVF) because of the shortage of ground-truth target fusion images, and image quality and contrast control are rarely considered in existing IVF methods. In this study, we proposed a simple IVF pipeline that converts the IVF problem into a supervised binary classification problem (sharp vs. blur) and uses image enhancement techniques to improve the image quality in three locations in the pipeline. We took a biological vision consistent assumption that the sharp region contains more useful information than the blurred region. A deep binary classifier based on a convolutional neural network (CNN) was designed to compare the sharpness of the infrared region and visible regions. The output score map of the deep classifier was treated as a weight map in the weighted average fusion rule. The proposed deep binary classifier was trained using natural visible images from the MS COCO dataset, rather than images from the IVF domain (called "cross domain training" here). Specifically, our proposed pipeline contains four stages: (1) enhancing the IR and VIS input images by linear transformation and the High-Dynamic-Range Compression (HDRC) method, respectively; (2) inputting the enhanced IR and VIS images to the trained CNN classifier to obtain the weight map; and (3) using a weight map to obtain the weighted average of the enhanced IR and VIS images; and (4) using single scale Retinex (SSR) to enhance the fused image to obtain the final enhanced fusion image. Extensive experimental results on public IVF datasets demonstrate the superior performance of our proposed approach over other state-of-the-art methods in terms of both subjective visual quality and 11 objective metrics. It was demonstrated that the complementary information between the infrared and visible images can be efficiently extracted using our proposed binary classifier, and the fused image quality is significantly improved. The source code is available at https://github.com/eyob12/Deep_infrared_and_visible_image_fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马静雨完成签到,获得积分20
刚刚
1秒前
1秒前
快乐小白菜应助shenzhou9采纳,获得10
1秒前
无花果应助aertom采纳,获得10
1秒前
小田发布了新的文献求助10
1秒前
sankumao发布了新的文献求助30
1秒前
奋斗的盼柳完成签到 ,获得积分10
2秒前
3秒前
Jasper应助handsomecat采纳,获得10
3秒前
3秒前
李雪完成签到,获得积分10
4秒前
4秒前
sv发布了新的文献求助10
6秒前
小田完成签到,获得积分10
6秒前
茶茶完成签到,获得积分20
6秒前
苏兴龙完成签到,获得积分10
6秒前
坚强的亦云-333完成签到,获得积分10
6秒前
Ava应助dan1029采纳,获得10
7秒前
7秒前
7秒前
奶糖最可爱完成签到,获得积分10
8秒前
8秒前
mojomars发布了新的文献求助10
9秒前
幽壑之潜蛟应助茶茶采纳,获得10
9秒前
10秒前
10秒前
10秒前
迅速海云完成签到,获得积分10
10秒前
sjxx发布了新的文献求助10
10秒前
10秒前
乐乐应助Rachel采纳,获得10
11秒前
11秒前
11秒前
天天快乐应助孤独的珩采纳,获得10
12秒前
帅气鹭洋发布了新的文献求助20
12秒前
13秒前
孙悦发布了新的文献求助10
13秒前
知性的绮兰完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794