清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A deep learning and image enhancement based pipeline for infrared and visible image fusion

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 深度学习 图像融合 分类器(UML) 计算机视觉 基本事实 融合 转化(遗传学) 图像(数学) 哲学 语言学 生物化学 化学 基因
作者
Jin Qi,Deboch Eyob Abera,Mola Natnael Fanose,Lingfeng Wang,Jun Cheng
出处
期刊:Neurocomputing [Elsevier]
卷期号:578: 127353-127353
标识
DOI:10.1016/j.neucom.2024.127353
摘要

It is difficult to use supervised machine-learning methods for infrared (IR) and visible (VIS) image fusion (IVF) because of the shortage of ground-truth target fusion images, and image quality and contrast control are rarely considered in existing IVF methods. In this study, we proposed a simple IVF pipeline that converts the IVF problem into a supervised binary classification problem (sharp vs. blur) and uses image enhancement techniques to improve the image quality in three locations in the pipeline. We took a biological vision consistent assumption that the sharp region contains more useful information than the blurred region. A deep binary classifier based on a convolutional neural network (CNN) was designed to compare the sharpness of the infrared region and visible regions. The output score map of the deep classifier was treated as a weight map in the weighted average fusion rule. The proposed deep binary classifier was trained using natural visible images from the MS COCO dataset, rather than images from the IVF domain (called "cross domain training" here). Specifically, our proposed pipeline contains four stages: (1) enhancing the IR and VIS input images by linear transformation and the High-Dynamic-Range Compression (HDRC) method, respectively; (2) inputting the enhanced IR and VIS images to the trained CNN classifier to obtain the weight map; and (3) using a weight map to obtain the weighted average of the enhanced IR and VIS images; and (4) using single scale Retinex (SSR) to enhance the fused image to obtain the final enhanced fusion image. Extensive experimental results on public IVF datasets demonstrate the superior performance of our proposed approach over other state-of-the-art methods in terms of both subjective visual quality and 11 objective metrics. It was demonstrated that the complementary information between the infrared and visible images can be efficiently extracted using our proposed binary classifier, and the fused image quality is significantly improved. The source code is available at https://github.com/eyob12/Deep_infrared_and_visible_image_fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李李李完成签到,获得积分10
33秒前
lalala发布了新的文献求助200
49秒前
风中的棒棒糖完成签到 ,获得积分10
52秒前
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
lalala发布了新的文献求助10
1分钟前
1分钟前
紫熊完成签到,获得积分10
1分钟前
eccentric发布了新的文献求助10
1分钟前
eccentric完成签到,获得积分10
2分钟前
2分钟前
情怀应助ying采纳,获得10
2分钟前
lanxinge完成签到 ,获得积分10
3分钟前
英俊的铭应助doctor采纳,获得10
3分钟前
wanci应助科研通管家采纳,获得10
3分钟前
WerWu完成签到,获得积分10
3分钟前
3分钟前
爱静静举报求助违规成功
3分钟前
浅尝离白举报求助违规成功
3分钟前
嘉心糖举报求助违规成功
3分钟前
3分钟前
TYJ10002发布了新的文献求助10
3分钟前
lalala发布了新的文献求助10
4分钟前
4分钟前
Sandy完成签到,获得积分10
4分钟前
4分钟前
畅快行云发布了新的文献求助10
4分钟前
4分钟前
5分钟前
oracl完成签到 ,获得积分10
5分钟前
5分钟前
ying完成签到,获得积分10
6分钟前
ying发布了新的文献求助10
6分钟前
6分钟前
顾矜应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
8分钟前
Jenny完成签到,获得积分10
8分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171584
求助须知:如何正确求助?哪些是违规求助? 2822446
关于积分的说明 7939238
捐赠科研通 2483077
什么是DOI,文献DOI怎么找? 1322962
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647