A deep learning and image enhancement based pipeline for infrared and visible image fusion

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 深度学习 图像融合 分类器(UML) 计算机视觉 基本事实 融合 转化(遗传学) 图像(数学) 基因 哲学 生物化学 语言学 化学
作者
Jin Qi,Deboch Eyob Abera,Mola Natnael Fanose,Lingfeng Wang,Jian Cheng
出处
期刊:Neurocomputing [Elsevier]
卷期号:578: 127353-127353 被引量:14
标识
DOI:10.1016/j.neucom.2024.127353
摘要

It is difficult to use supervised machine-learning methods for infrared (IR) and visible (VIS) image fusion (IVF) because of the shortage of ground-truth target fusion images, and image quality and contrast control are rarely considered in existing IVF methods. In this study, we proposed a simple IVF pipeline that converts the IVF problem into a supervised binary classification problem (sharp vs. blur) and uses image enhancement techniques to improve the image quality in three locations in the pipeline. We took a biological vision consistent assumption that the sharp region contains more useful information than the blurred region. A deep binary classifier based on a convolutional neural network (CNN) was designed to compare the sharpness of the infrared region and visible regions. The output score map of the deep classifier was treated as a weight map in the weighted average fusion rule. The proposed deep binary classifier was trained using natural visible images from the MS COCO dataset, rather than images from the IVF domain (called "cross domain training" here). Specifically, our proposed pipeline contains four stages: (1) enhancing the IR and VIS input images by linear transformation and the High-Dynamic-Range Compression (HDRC) method, respectively; (2) inputting the enhanced IR and VIS images to the trained CNN classifier to obtain the weight map; and (3) using a weight map to obtain the weighted average of the enhanced IR and VIS images; and (4) using single scale Retinex (SSR) to enhance the fused image to obtain the final enhanced fusion image. Extensive experimental results on public IVF datasets demonstrate the superior performance of our proposed approach over other state-of-the-art methods in terms of both subjective visual quality and 11 objective metrics. It was demonstrated that the complementary information between the infrared and visible images can be efficiently extracted using our proposed binary classifier, and the fused image quality is significantly improved. The source code is available at https://github.com/eyob12/Deep_infrared_and_visible_image_fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
楼芷天发布了新的文献求助10
刚刚
糖豆完成签到,获得积分10
1秒前
1秒前
808bass应助屈聪展采纳,获得10
2秒前
科研通AI6应助何永森采纳,获得10
2秒前
伶俐的铁身完成签到,获得积分10
2秒前
哈温完成签到,获得积分10
2秒前
2秒前
炙热怀蝶发布了新的文献求助10
3秒前
3秒前
还有跟发布了新的文献求助10
3秒前
CipherSage应助LAMO采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
深情安青应助冗99采纳,获得10
4秒前
4秒前
Hello应助ccob采纳,获得10
4秒前
黑章鱼保罗完成签到,获得积分10
4秒前
科目三应助健壮诗桃采纳,获得10
4秒前
5秒前
婷婷的大宝剑完成签到 ,获得积分10
5秒前
5秒前
我是老大应助Asa采纳,获得10
5秒前
6秒前
苗松完成签到,获得积分10
6秒前
Lauren完成签到 ,获得积分10
6秒前
陈陈陈发布了新的文献求助30
6秒前
6秒前
avalanche发布了新的文献求助30
8秒前
shsdkl完成签到,获得积分10
8秒前
8秒前
充电宝应助sixseven采纳,获得10
9秒前
pcr163应助Ico采纳,获得500
9秒前
whisper发布了新的文献求助10
10秒前
chenhouhan发布了新的文献求助10
10秒前
化学少女完成签到,获得积分10
10秒前
11秒前
Ava应助明理的帆布鞋采纳,获得10
11秒前
求助人员应助李紫晗采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188