电解质
材料科学
阳极
溶剂化
阴极
锂(药物)
化学工程
分解
分子
电极
无机化学
化学物理
化学
物理化学
有机化学
内分泌学
工程类
医学
作者
Guangzhao Zhang,Jiawei Li,Shang‐Sen Chi,Jun Wang,Qingrong Wang,Ruohong Ke,Zhongbo Liu,Hui Wang,Chaoyang Wang,Jian Chang,Yonghong Deng,Jun Lü
标识
DOI:10.1002/adfm.202312413
摘要
Abstract Electrolytes with high stability against both Li anode and high‐voltage cathode are critical for high‐energy and long‐cycling lithium metal batteries (LMBs). However, the free active solvents in common electrolytes are susceptible to decomposition at both Li anode and high‐voltage cathode. Although recently developed locally high‐concentration electrolytes (LHCEs) have largely restricted active solvents via Li + coordination, the free molecules are still released upon the desolvation of Li + at the surface of electrodes, causing continuous decomposition during long‐cycling processes. Here, a molecule competitive solvation electrolyte (MCE) is shown to stabilize high‐voltage LMBs by introducing a well‐designed and newly synthetic bipolar solvent molecule with one ion‐dissociative polar head and the other highly fluorinated nonpolar tail. The bipolar molecules competitively dissociate Li + via weak coordination interactions, drastically reducing the ratio of active solvents in electrolytes and the detrimental decomposition at electrodes during the desolvation processes. Consequently, the MCE enables a 1.4‐Ah Li metal pouch cell with a stack energy density of 450 Wh kg −1 along with exceptional operation stability over 400 cycles (retention: 81%). Furthermore, the MCE also maintains the stable operation of a 2.5‐Ah Li‐S pouch cell with an excellent energy density of 417 Wh kg −1 for 70 cycles under practical conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI