Antimicrobial mechanisms of g‐C3N4@ZnO against oomycetes Phytophthora capsici: From its metabolism, membrane structures and growth

辣椒疫霉 抗菌剂 生物 新陈代谢 疫霉菌 植物 次生代谢 微生物学 生物化学 基因 生物合成
作者
Lin Cai,Xiaopeng Huang,Hui Fu,Guangjin Fan,Xianchao Sun
出处
期刊:Pest Management Science [Wiley]
标识
DOI:10.1002/ps.7946
摘要

Phytophthora capsici, a refractory and model oomycete plant pathogen, especially threatens multiple vegetable crops. A limited number of chemical pesticides play a vital role in controlling oomycete plant diseases. However, this approach often leads to excessive use of chemical agent, exacerbates environmental issues and more and more drug-resistant strains of oomycete. Therefore, it is imperative to devise innovative solutions that can effectively address the infection of oomycete while maintaining high levels of environmental sustainability and low toxicity.In this study, g-C3 N4 @ZnO heterostructure was synthesized and characterized. The g-C3 N4 @ZnO showed higher toxicity on Phytophthora capsici than graphitic carbon nitride (g-C3 N4 ) nanosheets and zinc oxide (ZnO) nanoparticles in vitro and in vivo. Except the hyphal growth of Phytophthora capsici, their germination rate of spores, sporangium formation and number of spores were all suppressed by g-C3 N4 @ZnO heterostructure. Furthermore, we found that this g-C3 N4 @ZnO heterostructure has higher photocatalytic activity under visible light, which potentially enhanced the reactive oxygen species (ROS) mediated stress on Phytophthora capsici. Ultrastructural morphology, global changes of gene expression and weighted gene co-expression network analysis all supported that the anti-oomycete activity of g-C3 N4 @ZnO was manifested in the destruction of membrane system and inhibition of multiple metabolisms of Phytophthora capsici under visible irradiation, which also could be attributed to the ROS and zinc ion (Zn2+ ) mediated stress.This works offers a novel oomycete disease management strategy by using g-C3 N4 @ZnO, which were attributed to the ROS stress, destruction of membrane system and inhibition of multiple metabolisms. © 2023 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马婷发布了新的文献求助10
1秒前
xuan发布了新的文献求助10
2秒前
TAN发布了新的文献求助10
2秒前
3秒前
赘婿应助ywzwszl采纳,获得10
3秒前
hiou应助傲娇文博采纳,获得30
4秒前
6秒前
6秒前
一一完成签到,获得积分10
7秒前
arya应助若水采纳,获得10
7秒前
srz楠楠完成签到,获得积分10
7秒前
pengjiejie完成签到,获得积分10
8秒前
丘比特应助马婷采纳,获得10
9秒前
9秒前
传奇3应助cwm采纳,获得10
10秒前
10秒前
枫花雪发布了新的文献求助10
12秒前
从云完成签到,获得积分10
12秒前
arya应助维维采纳,获得10
12秒前
13秒前
TAN完成签到,获得积分10
13秒前
你爸爸完成签到,获得积分10
14秒前
SciGPT应助科研通管家采纳,获得10
15秒前
yar应助科研通管家采纳,获得10
15秒前
自由一一应助科研通管家采纳,获得10
15秒前
15秒前
wanci应助科研通管家采纳,获得10
16秒前
David发布了新的文献求助10
16秒前
yar应助科研通管家采纳,获得10
16秒前
yar应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
yar应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
有机去鼠完成签到 ,获得积分10
17秒前
hiou应助roselin26采纳,获得30
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312373
求助须知:如何正确求助?哪些是违规求助? 2945014
关于积分的说明 8522631
捐赠科研通 2620796
什么是DOI,文献DOI怎么找? 1433057
科研通“疑难数据库(出版商)”最低求助积分说明 664824
邀请新用户注册赠送积分活动 650187