Numerical simulation of the effect of street trees on outdoor mean radiant temperature through decomposing pedestrian experienced thermal radiation: A case study in Guangzhou, China

平均辐射温度 中国 环境科学 行人 地理 气象学 自然地理学 气候变化 生态学 考古 生物
作者
Qi Li,Qiong Li,Xiaohui Lu,Yan Liu
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:91: 128189-128189 被引量:1
标识
DOI:10.1016/j.ufug.2023.128189
摘要

Street trees have often been proposed to improve the outdoor thermal environment. However, due to the combined effects generated by street trees, the impacts of street trees on the thermal radiation field in a street canyon and mean radiant temperature (Tmrt) reduction have not been systematically analyzed in previous studies. In this paper, we developed a Tmrt decomposition model using first-order Taylor series expansion to decompose the various factors of the street trees on Tmrt reduction and quantify their individual and combined effects in Guangzhou, China. Our results showed that street trees significantly reduce Tmrt and severe heat stress events (Tmrt ≥ 60 °C). For 80% tree crown cover, the maximum decrease of Tmrt by 26.2 °C - 42.1 °C and the severe heat stress events decreased by 197 h - 500 h over the course of a year at different sidewalk locations, compared to the street canyon without trees. During the daytime, the interception of radiation (especially short-wave radiation) by street trees was the primary determinant in reducing Tmrt, with a contribution that mostly exceeded 70%. Additionally, the shading effects of street trees decreased the short-wave radiation reflected from urban surfaces, contributing about 20% to Tmrt reduction. Lastly, our results also showed the leaf area index played an important role in the Tmrt reduction. Our study quantified the individual and combined effects of each factors of reducing Tmrt by street trees, which will better understand the thermal benefits of urban street trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半颗橙子发布了新的文献求助10
1秒前
1秒前
23我发布了新的文献求助10
2秒前
清浅时光完成签到,获得积分20
3秒前
FashionBoy应助75986686采纳,获得10
3秒前
J.发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
乐乐应助Darlin采纳,获得10
5秒前
Sky发布了新的文献求助10
5秒前
6秒前
7秒前
9秒前
9秒前
哈哈爱呀完成签到 ,获得积分10
10秒前
lll关注了科研通微信公众号
10秒前
依诺发布了新的文献求助10
10秒前
yyauthor发布了新的文献求助10
10秒前
研友_nV2pkn发布了新的文献求助10
11秒前
云瑾应助无辜的惜寒采纳,获得10
11秒前
ylky发布了新的文献求助20
11秒前
11秒前
12秒前
12秒前
caipengju发布了新的文献求助30
12秒前
桐桐应助细心的语蓉采纳,获得10
14秒前
啦啦啦发布了新的文献求助10
15秒前
16秒前
123456完成签到,获得积分10
18秒前
18秒前
19秒前
21秒前
朴实天寿应助小小莫采纳,获得20
22秒前
22秒前
烟花应助啦啦啦采纳,获得10
22秒前
柚子发布了新的文献求助10
22秒前
23秒前
共享精神应助白华苍松采纳,获得10
23秒前
奇奇发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919