指数稳定性
独特性
半群
理论(学习稳定性)
梁(结构)
热传导
第二声
消散
数学
压电
数学分析
物理
控制理论(社会学)
声音(地理)
计算机科学
量子力学
声学
机器学习
控制(管理)
非线性系统
人工智能
光学
作者
Mengxian Lv,Jun‐Min Wang,Jing Yang
标识
DOI:10.1002/zamm.202300480
摘要
Abstract In this paper, we consider a fully‐dynamic piezoelectric beam model subjected to a magnetic effect, where the heat flux is given by Cattaneo's law. It is well known that, in the absence of delay, the dissipation produced by the heat conduction is strong enough to make the piezoelectric beams exponentially stable. However, time delay effects may destroy this behavior. Here, we show the existence and uniqueness of solutions through the semigroup theory. Furthermore, under a smallness condition on the delay, we prove an exponential stability result via establishing the appropriate Lyapunov functional. Finally, we numerically illustrate the asymptotic behavior of the solution.
科研通智能强力驱动
Strongly Powered by AbleSci AI