Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes

溶剂化 选择性 共价键 化学 离子 离子运输机 跨膜蛋白 化学物理 有机化学 生物化学 催化作用 受体
作者
Qing-Wei Meng,Xincheng Zhu,Weipeng Xian,Sai Wang,Zhengqing Zhang,Liping Zheng,Zhifeng Dai,Hong Yin,Shengqian Ma,Qi Sun
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (8) 被引量:30
标识
DOI:10.1073/pnas.2316716121
摘要

Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li + and Mg 2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li + and Mg 2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li + and Mg 2+ , resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li + /Mg 2+ selectivity of up to 1352, making it one of the most effective membranes available for Li + /Mg 2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kxy完成签到,获得积分10
1秒前
1秒前
婧婧完成签到 ,获得积分10
1秒前
2秒前
3秒前
左友铭完成签到 ,获得积分10
3秒前
sweetbearm应助通~采纳,获得10
3秒前
AKLIZE完成签到,获得积分10
3秒前
刘大妮完成签到,获得积分10
4秒前
clean完成签到,获得积分20
5秒前
Lucas发布了新的文献求助10
5秒前
5秒前
朴实以松发布了新的文献求助10
5秒前
感谢橘子转发科研通微信,获得积分50
5秒前
围炉煮茶完成签到,获得积分10
6秒前
6秒前
云锋发布了新的文献求助10
7秒前
兴奋的问旋应助务实盼海采纳,获得10
7秒前
李秋静发布了新的文献求助10
7秒前
7秒前
无花果应助cookie采纳,获得10
8秒前
8秒前
斯文败类应助阳尧采纳,获得10
8秒前
9秒前
9秒前
abjz完成签到,获得积分10
9秒前
三千弱水为君饮完成签到,获得积分10
10秒前
10秒前
cata完成签到,获得积分10
10秒前
感谢79转发科研通微信,获得积分50
10秒前
10秒前
troubadourelf发布了新的文献求助10
11秒前
frank发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
感谢超帅冬易转发科研通微信,获得积分50
14秒前
14秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794