Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network

卷积神经网络 计算机科学 人工智能 水准点(测量) 分割 深度学习 血涂片 对偶(语法数字) 一般化 模式识别(心理学) 机器学习 医学影像学 病理 疟疾 医学 艺术 文学类 数学分析 数学 大地测量学 地理
作者
Siraj M. Khan,Muhammad Sajjad,Naveed Abbas,José Escorcia‐Gutierrez,Margarita Gamarra,Khan Muhammad
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108146-108146 被引量:9
标识
DOI:10.1016/j.compbiomed.2024.108146
摘要

Leukocytes, also called White Blood Cells (WBCs) or leucocytes, are the cells that play a pivotal role in human health and are vital indicators of diseases such as malaria, leukemia, AIDS, and other viral infections. WBCs detection and classification in blood smears offers insights to pathologists, aiding diagnosis across medical conditions. Traditional techniques, including manual counting, detection, classification, and visual inspection of microscopic images by medical professionals, pose challenges due to their labor-intensive nature. However, traditional methods are time consuming and sometimes susceptible to errors. Here, we propose a high-performance convolutional neural network (CNN) coupled with a dual-attention network that efficiently detects and classifies WBCs in microscopic thick smear images. The main aimed of this study to enhance clinical hematology systems and expedite medical diagnostic processes. In the proposed technique, we utilized a deep convolutional generative adversarial network (DCGAN) to overcome the limitations imposed by limited training data and employed a dual attention mechanism to improve accuracy, efficiency, and generalization. The proposed technique achieved overall accuracy rates of 99.83%, 99.35%, and 99.60% for the peripheral blood cell (PBC), leukocyte images for segmentation and classification (LISC), and Raabin-WBC benchmark datasets, respectively. Our proposed approach outperforms state-of-the-art methods in terms of accuracy, highlighting the effectiveness of the strategies employed and their potential to enhance diagnostic capabilities and advance real-world healthcare practices and diagnostic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张腾昊发布了新的文献求助30
刚刚
JamesPei应助黑暗系采纳,获得30
刚刚
刚刚
星辰大海应助Ray采纳,获得10
1秒前
今后应助yiyi采纳,获得30
1秒前
科研通AI2S应助AN采纳,获得10
1秒前
大个应助AN采纳,获得10
1秒前
Jasper应助stars采纳,获得10
2秒前
任性青烟发布了新的文献求助30
2秒前
糖果苏扬发布了新的文献求助30
2秒前
汤圆发布了新的文献求助10
2秒前
米米发布了新的文献求助10
2秒前
SciGPT应助圣城余晖采纳,获得10
3秒前
3秒前
zwq完成签到,获得积分10
3秒前
领导范儿应助lmp采纳,获得10
4秒前
诸荟完成签到,获得积分10
4秒前
善学以致用应助新羽采纳,获得10
4秒前
Alan完成签到,获得积分10
5秒前
乐乐应助nicolaslcq采纳,获得10
5秒前
小宋发布了新的文献求助10
6秒前
Magali应助等待的剑身采纳,获得30
7秒前
Yjy发布了新的文献求助10
7秒前
9秒前
11秒前
DamonChen发布了新的文献求助10
12秒前
womodou发布了新的文献求助10
13秒前
13秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
高高应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
小天应助科研通管家采纳,获得10
14秒前
高高应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
小天应助科研通管家采纳,获得10
15秒前
15秒前
空白山应助科研通管家采纳,获得10
15秒前
小天应助科研通管家采纳,获得10
15秒前
高高应助科研通管家采纳,获得10
15秒前
归尘发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544030
求助须知:如何正确求助?哪些是违规求助? 3121232
关于积分的说明 9346245
捐赠科研通 2819283
什么是DOI,文献DOI怎么找? 1550155
邀请新用户注册赠送积分活动 722389
科研通“疑难数据库(出版商)”最低求助积分说明 713191