阳极
阴极
电解质
材料科学
电池(电)
锂(药物)
降级(电信)
氧化物
纳米技术
储能
化学工程
电极
化学
计算机科学
热力学
功率(物理)
工程类
物理
物理化学
电信
医学
冶金
内分泌学
作者
Shiming Chen,Guorui Zheng,Xiangming Yao,Jinlin Xiao,Wenguang Zhao,Ke Li,Jianjun Fang,Zhuonan Jiang,Yuxiang Huang,Yuchen Ji,Kai Yang,Zu‐Wei Yin,Meng Zhang,Feng Pan,Luyi Yang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-02-14
卷期号:18 (8): 6600-6611
被引量:7
标识
DOI:10.1021/acsnano.3c12823
摘要
Coupling Ni-rich layered oxide cathodes with Si-based anodes is one of the most promising strategies to realize high-energy-density Li-ion batteries. However, unstable interfaces on both cathode and anode sides cause continuous parasitic reactions, resulting in structural degradation and capacity fading of full cells. Herein, lithium tetrafluoro(oxalato) phosphate is synthesized and applied as a multifunctional electrolyte additive to mitigate irreversible volume swing of the SiOx anode and suppress undesirable interfacial evolution of the LiNi0.83Co0.12Mn0.05O2 (NCM) cathode simultaneously, resulting in improved cycle life. Benefiting from its desirable redox thermodynamics and kinetics, the molecularly tailored additive facilitates matching interphases consisting of LiF, Li3PO4, and P-containing macromolecular polymer on both the NCM cathode and SiOx anode, respectively, modulating interfacial chemo-mechanical stability as well as charge transfer kinetics. More encouragingly, the proposed strategy enables 4.4 V 21700 cylindrical batteries (5 Ah) with excellent cycling stability (92.9% capacity retention after 300 cycles) under practical conditions. The key finding points out a fresh perspective on interfacial optimization for high-energy-density battery systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI