Fragility modeling practices and their implications on risk and resilience analysis: From the structure to the network scale

脆弱性 弹性(材料科学) 文件夹 风险分析(工程) 比例(比率) 计算机科学 航程(航空) 计量经济学 工程类 经济 业务 地理 航空航天工程 化学 物理化学 物理 金融经济学 热力学 地图学
作者
Raul Rincón,Jamie E. Padgett
出处
期刊:Earthquake Spectra [SAGE Publishing]
卷期号:40 (1): 647-673 被引量:2
标识
DOI:10.1177/87552930231219220
摘要

Although fragility function development for structures is a mature field, it has recently thrived on new algorithms propelled by machine learning (ML) methods along with heightened emphasis on functions tailored for community- to regional-scale application. This article seeks to critically assess the implications of adopting alternative traditional and emerging fragility modeling practices within seismic risk and resilience quantification to guide future analyses that span from the structure to infrastructure network scale. For example, this article probes the similarities and differences in traditional and ML techniques for demand modeling, discusses the shift from one-parameter to multiparameter fragility models, and assesses the variations in fragility outcomes via statistical distance concepts. Moreover, the previously unexplored influence of these practices on a range of performance measures (e.g. conditional probability of damage, risk of losses to individual structures, portfolio risks, and network recovery trajectories) is systematically evaluated via the posed statistical distance metrics. To this end, case studies using bridges and transportation networks are leveraged to systematically test the implications of alternative seismic fragility modeling practices. The results show that, contrary to the classically adopted archetype fragilities, parameterized ML-based models achieve similar results on individual risk metrics compared to structure-specific fragilities, promising to improve portfolio fragility definitions, deliver satisfactory risk and resilience outcomes at different scales, and pinpoint structures whose poor performance extends to the global network resilience estimates. Using flexible fragility models to depict heterogeneous portfolios is expected to support dynamic decisions that may take place at different scales, space, and time, throughout infrastructure systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小卫卫发布了新的文献求助10
刚刚
NexusExplorer应助彳亍采纳,获得10
刚刚
qiao发布了新的文献求助10
2秒前
3秒前
3秒前
ding应助谨慎的雨梅采纳,获得10
3秒前
无花果应助pluto采纳,获得10
4秒前
5秒前
神奇的牛肉干完成签到,获得积分10
5秒前
6秒前
CC0924完成签到,获得积分10
6秒前
qiao完成签到,获得积分10
6秒前
123456完成签到,获得积分10
7秒前
7秒前
小阳发布了新的文献求助10
8秒前
细辛发布了新的文献求助10
8秒前
10秒前
生动路人应助调皮的浩天采纳,获得10
10秒前
10秒前
10秒前
QQ应助科研通管家采纳,获得20
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
孙福禄应助科研通管家采纳,获得10
11秒前
科研助手6应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
谢许杯商应助科研通管家采纳,获得10
11秒前
qin希望应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
科研助手6应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
孙福禄应助科研通管家采纳,获得10
11秒前
11秒前
Owen应助科研通管家采纳,获得20
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020