Population-Specific Glucose Prediction in Diabetes Care With Transformer-Based Deep Learning on the Edge

可穿戴计算机 计算机科学 可穿戴技术 人口 边缘计算 机器学习 深度学习 蓝牙 人工智能 GSM演进的增强数据速率 嵌入式系统 无线 医学 操作系统 环境卫生
作者
Taiyu Zhu,Lei Kuang,Chengzhe Piao,Junming Zeng,Kezhi Li,Pantelis Georgiou
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tbcas.2023.3348844
摘要

Leveraging continuous glucose monitoring (CGM) systems, real-time blood glucose (BG) forecasting is essential for proactive interventions, playing a crucial role in enhancing the management of type 1 diabetes (T1D) and type 2 diabetes (T2D). However, developing a model generalized to a population and subsequently embedding it within a microchip of a wearable device presents significant technical challenges. Furthermore, the domain of BG prediction in T2D remains under-explored in the literature. In light of this, we propose a population-specific BG prediction model, leveraging the capabilities of the temporal fusion Transformer (TFT) to adjust predictions based on personal demographic data. Then the trained model is embedded within a system-on-chip, integral to our low-power and low-cost customized wearable device. This device seamlessly communicates with CGM systems through Bluetooth and provides timely BG predictions using edge computing. When evaluated on two publicly available clinical datasets with a total of 124 participants with T1D or T2D, the embedded TFT model consistently demonstrated superior performance, achieving the lowest prediction errors when compared with a range of machine learning baseline methods. Executing the TFT model on our wearable device requires minimal memory and power consumption, enabling continuous decision support for more than 51 days on a single Li-Poly battery charge. These findings demonstrate the significant potential of the proposed TFT model and wearable device in enhancing the quality of life for people with diabetes and effectively addressing real-world challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助平常的凡白采纳,获得10
4秒前
烟花应助啊哈第一式采纳,获得10
5秒前
YuanbinMao应助枯藤老柳树采纳,获得10
6秒前
虞雅柏完成签到,获得积分10
6秒前
9秒前
10秒前
10秒前
华仔应助虞雅柏采纳,获得10
11秒前
14秒前
Pixie发布了新的文献求助10
14秒前
皮皮鲁发布了新的文献求助10
14秒前
nanalalal发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
李沛书完成签到,获得积分10
18秒前
跳跃雨寒完成签到 ,获得积分10
19秒前
20秒前
瞿霞发布了新的文献求助10
21秒前
22秒前
英姑应助王淑惠采纳,获得10
23秒前
23秒前
24秒前
小马甲应助宁静致远采纳,获得10
24秒前
24秒前
Zoeforever发布了新的文献求助10
25秒前
烟花应助我觉得很危险采纳,获得10
25秒前
cc完成签到,获得积分10
25秒前
SciGPT应助李沛书采纳,获得10
26秒前
27秒前
韩大大发布了新的文献求助10
27秒前
凌代萱发布了新的文献求助10
27秒前
ding应助明亮的啤酒采纳,获得10
28秒前
怕黑翠完成签到,获得积分20
28秒前
29秒前
29秒前
29秒前
29秒前
寸木发布了新的文献求助10
29秒前
Damon发布了新的文献求助10
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228233
求助须知:如何正确求助?哪些是违规求助? 2876013
关于积分的说明 8193684
捐赠科研通 2543222
什么是DOI,文献DOI怎么找? 1373580
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621316