Constructing a personalized prognostic risk model for colorectal cancer using machine learning and multi‐omics approach based on epithelial–mesenchymal transition‐related genes

组学 结直肠癌 MMP1型 上皮-间质转换 生物信息学 机器学习 基因 计算生物学 医学 癌症 肿瘤科 计算机科学 生物 内科学 基因表达 转移 生物化学
作者
Shuze Zhang,Wanli Fan,He Dong
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:1
标识
DOI:10.1002/jgm.3660
摘要

Abstract The progression and the metastatic potential of colorectal cancer (CRC) are intricately linked to the epithelial–mesenchymal transition (EMT) process. The present study harnesses the power of machine learning combined with multi‐omics data to develop a risk stratification model anchored on EMT‐associated genes. The aim is to facilitate personalized prognostic assessments in CRC. We utilized publicly accessible gene expression datasets to pinpoint EMT‐associated genes, employing a CoxBoost algorithm to sift through these genes for prognostic significance. The resultant model, predicated on gene expression levels, underwent rigorous independent validation across various datasets. Our model demonstrated a robust capacity to segregate CRC patients into distinct high‐ and low‐risk categories, each correlating with markedly different survival probabilities. Notably, the risk score emerged as an independent prognostic indicator for CRC. High‐risk patients were characterized by an immunosuppressive tumor milieu and a heightened responsiveness to certain chemotherapeutic agents, underlining the model's potential in steering tailored oncological therapies. Moreover, our research unearthed a putative repressive interaction between the long non‐coding RNA PVT1 and the EMT‐associated genes TIMP1 and MMP1, offering new insights into the molecular intricacies of CRC. In essence, our research introduces a sophisticated risk model, leveraging machine learning and multi‐omics insights, which accurately prognosticates outcomes for CRC patients, paving the way for more individualized and effective oncological treatment paradigms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青黄完成签到,获得积分10
1秒前
奋斗的猪完成签到 ,获得积分10
1秒前
1秒前
yc完成签到,获得积分10
1秒前
英俊的铭应助123131采纳,获得10
1秒前
历历历历完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
华仔应助开心采纳,获得10
2秒前
单薄的忆枫完成签到,获得积分10
3秒前
土豆淀粉发布了新的文献求助10
3秒前
4秒前
欣欣完成签到 ,获得积分10
4秒前
5秒前
如意冰棍发布了新的文献求助10
5秒前
嗷嗷发布了新的文献求助10
5秒前
震震应助爱躺平的老baby采纳,获得10
5秒前
5秒前
优雅含莲完成签到 ,获得积分10
6秒前
6秒前
6秒前
Bugatti完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
自由的白玉完成签到,获得积分20
8秒前
9秒前
hj木秀于林完成签到,获得积分10
9秒前
9秒前
无语的无声完成签到,获得积分10
9秒前
10秒前
稳重的宛丝完成签到 ,获得积分10
10秒前
雪白的灵竹完成签到,获得积分10
10秒前
Owen应助pwy采纳,获得10
11秒前
温柔的婷发布了新的文献求助30
12秒前
FashionBoy应助jiujiu采纳,获得30
13秒前
和谐竺发布了新的文献求助10
13秒前
dfsdf发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403