Constructing a personalized prognostic risk model for colorectal cancer using machine learning and multi‐omics approach based on epithelial–mesenchymal transition‐related genes

组学 结直肠癌 MMP1型 上皮-间质转换 生物信息学 机器学习 基因 计算生物学 医学 癌症 肿瘤科 计算机科学 生物 内科学 基因表达 转移 生物化学
作者
Shuze Zhang,Wanli Fan,He Dong
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1)
标识
DOI:10.1002/jgm.3660
摘要

Abstract The progression and the metastatic potential of colorectal cancer (CRC) are intricately linked to the epithelial–mesenchymal transition (EMT) process. The present study harnesses the power of machine learning combined with multi‐omics data to develop a risk stratification model anchored on EMT‐associated genes. The aim is to facilitate personalized prognostic assessments in CRC. We utilized publicly accessible gene expression datasets to pinpoint EMT‐associated genes, employing a CoxBoost algorithm to sift through these genes for prognostic significance. The resultant model, predicated on gene expression levels, underwent rigorous independent validation across various datasets. Our model demonstrated a robust capacity to segregate CRC patients into distinct high‐ and low‐risk categories, each correlating with markedly different survival probabilities. Notably, the risk score emerged as an independent prognostic indicator for CRC. High‐risk patients were characterized by an immunosuppressive tumor milieu and a heightened responsiveness to certain chemotherapeutic agents, underlining the model's potential in steering tailored oncological therapies. Moreover, our research unearthed a putative repressive interaction between the long non‐coding RNA PVT1 and the EMT‐associated genes TIMP1 and MMP1, offering new insights into the molecular intricacies of CRC. In essence, our research introduces a sophisticated risk model, leveraging machine learning and multi‐omics insights, which accurately prognosticates outcomes for CRC patients, paving the way for more individualized and effective oncological treatment paradigms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dpp发布了新的文献求助10
刚刚
今今完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
打打应助无情的白桃采纳,获得10
2秒前
香蕉觅云应助与光同晨采纳,获得10
3秒前
3秒前
小蘑菇应助clm采纳,获得10
3秒前
yhnsag完成签到,获得积分10
3秒前
Lin完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
Rain发布了新的文献求助10
5秒前
butiflow完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
务实的唇膏完成签到,获得积分10
6秒前
Will完成签到,获得积分10
6秒前
6秒前
Micky完成签到,获得积分10
6秒前
ape发布了新的文献求助10
6秒前
十七发布了新的文献求助10
7秒前
gyt发布了新的文献求助10
7秒前
时尚战斗机完成签到,获得积分10
7秒前
7秒前
华安发布了新的文献求助30
8秒前
8秒前
迟大猫应助dpp采纳,获得10
8秒前
9秒前
astral完成签到,获得积分10
9秒前
科研通AI5应助HJJHJH采纳,获得30
10秒前
Isabel发布了新的文献求助10
10秒前
10秒前
桑姊发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762