Fracture Prediction of Hydrogel Using Machine Learning and Inhomogeneous Multiscale Network

断裂(地质) 计算机科学 卷积(计算机科学) 人工神经网络 人工智能 深度学习 机器学习 卷积神经网络 材料科学 复合材料
作者
Shoujing Zheng,Hao You,K.Y. Lam,Hua Li
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:7 (5) 被引量:3
标识
DOI:10.1002/adts.202300776
摘要

Abstract Hydrogels are soft polymeric materials with promising applications in biomedical fields. Understanding their fracture behavior is crucial for optimizing device design and performance. However, predicting hydrogel fracture is challenging due to the complex interplay between material properties and environmental factors. In this study, a machine learning (ML) approach to predict hydrogel fracture behavior is presented. A multiscale hydrogel fracture model is developed to generate simulation data, which is used to train a predictive neural network model. The ML model utilizes a hierarchical architecture of convolution long short‐term memory units to capture spatial and temporal dependencies in the data. Model predictions are found to closely match simulation results with high accuracy, demonstrating the ability to learn complex fracture processes. Comparison of crack lengths shows the model can generalize across different material parameters. This work highlights the potential of ML for advancing the understanding of hydrogel fracture and soft matter failure. The presented approach provides an efficient framework for predicting fracture in complex materials and systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
兜兜有糖完成签到,获得积分20
1秒前
lbj发布了新的文献求助10
1秒前
1秒前
1秒前
神勇雨双完成签到,获得积分10
1秒前
伍新完成签到,获得积分10
2秒前
Jasper应助xzn1123采纳,获得10
3秒前
3秒前
3秒前
Jasper应助meizijiu采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
5秒前
lxh发布了新的文献求助10
5秒前
郭博完成签到,获得积分10
6秒前
田様应助成就芒果tv采纳,获得10
6秒前
ice发布了新的文献求助10
6秒前
小马甲应助domingo采纳,获得10
7秒前
小蘑菇应助急急如律令采纳,获得10
7秒前
小不遛w发布了新的文献求助10
7秒前
7秒前
阿拉蕾123发布了新的文献求助10
8秒前
欣喜的涵柏完成签到,获得积分10
8秒前
满意的曼寒发布了新的文献求助200
8秒前
HJJHJH发布了新的文献求助30
8秒前
9秒前
匆匆发布了新的文献求助10
9秒前
9秒前
郭博发布了新的文献求助10
9秒前
科研通AI2S应助粗暴的毛豆采纳,获得10
9秒前
10秒前
烟花应助科研通管家采纳,获得10
10秒前
10秒前
zys2001mezy应助科研通管家采纳,获得20
10秒前
yznfly应助科研通管家采纳,获得30
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958799
求助须知:如何正确求助?哪些是违规求助? 3504983
关于积分的说明 11121652
捐赠科研通 3236440
什么是DOI,文献DOI怎么找? 1788768
邀请新用户注册赠送积分活动 871373
科研通“疑难数据库(出版商)”最低求助积分说明 802723