TGC-ARG: Predicting Antibiotic Resistance through Transformer-based Modeling and Contrastive Learning

计算机科学 变压器 抗生素耐药性 抗生素 微生物学 工程类 生物 电气工程 电压
作者
Yihan Dong,Xiaowen Hu,Zhijian Huang,Lei Deng
标识
DOI:10.1109/bibm58861.2023.10385506
摘要

The escalating severity of antibiotic resistance poses substantial challenges across diverse sectors, encompassing everyday life, agriculture, and clinical medical interventions. Conventional methods for investigating antibiotic resistance genes (ARGs), such as culture-based techniques and whole-genome sequencing, often suffer from demands of time, labor, and limited accuracy. Moreover, the fragmented nature of existing datasets hampers a comprehensive analysis of antibiotic resistance gene sequences. In this study, we introduce an innovative computational framework known as TGC-ARG, designed to predict potential ARGs. TGC-ARG harnesses protein sequences as input, retrieves protein structures through SCRATCH-1D, and employs a feature extraction module to deduce feature representations for both protein sequences and structures. Subsequently, we integrate a siamese network to establish a contrastive learning paradigm, thus augmenting the model's representational capabilities. The resultant sequence embeddings and structure embeddings are merged and directed into a Multilayer Perceptron (MLP) for predicting ARG presence. To assess the performance, we curate a pioneering publicly available dataset named ARSS (Antibiotic Resistance Sequence Statistics). Our extensive comparative experimental outcomes underscore the superiority of our approach over the current state-of-the-art (SOTA) methodology. Furthermore, through comprehensive case analyses, we demonstrate the efficacy of our approach in predicting potential ARGs. The dataset and source code are accessible at https://github.com/angel1gel/TGC-ARG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壹拾柒发布了新的文献求助20
刚刚
桐桐应助无情的白桃采纳,获得10
1秒前
请叫我风吹麦浪应助himsn采纳,获得40
1秒前
tzy发布了新的文献求助10
1秒前
2秒前
2秒前
今后应助专注的易文采纳,获得10
3秒前
lin完成签到,获得积分10
3秒前
执着的若灵完成签到,获得积分10
3秒前
3秒前
甜北枳完成签到,获得积分10
4秒前
SCI发布了新的文献求助10
4秒前
Frieren完成签到 ,获得积分10
4秒前
正直亦旋发布了新的文献求助10
4秒前
mjj发布了新的文献求助10
4秒前
是微微完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
起司嗯发布了新的文献求助10
6秒前
leon完成签到,获得积分10
6秒前
ccyrichard发布了新的文献求助10
6秒前
7秒前
李健应助无情山水采纳,获得10
8秒前
充电宝应助龙华之士采纳,获得10
9秒前
着急的笑旋完成签到,获得积分10
9秒前
澜生完成签到,获得积分10
10秒前
LLL完成签到 ,获得积分10
10秒前
April发布了新的文献求助10
10秒前
矜天完成签到 ,获得积分10
10秒前
cmy完成签到,获得积分10
11秒前
11秒前
笨蛋琪露诺完成签到,获得积分10
12秒前
专注的易文完成签到,获得积分10
12秒前
12秒前
刘怀蕊发布了新的文献求助10
12秒前
13秒前
13秒前
sptyzl完成签到 ,获得积分10
14秒前
彭于晏应助mnm采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762