TGC-ARG: Predicting Antibiotic Resistance through Transformer-based Modeling and Contrastive Learning

计算机科学 变压器 抗生素耐药性 抗生素 微生物学 工程类 生物 电气工程 电压
作者
Yihan Dong,Xiaowen Hu,Zhijian Huang,Lei Deng
标识
DOI:10.1109/bibm58861.2023.10385506
摘要

The escalating severity of antibiotic resistance poses substantial challenges across diverse sectors, encompassing everyday life, agriculture, and clinical medical interventions. Conventional methods for investigating antibiotic resistance genes (ARGs), such as culture-based techniques and whole-genome sequencing, often suffer from demands of time, labor, and limited accuracy. Moreover, the fragmented nature of existing datasets hampers a comprehensive analysis of antibiotic resistance gene sequences. In this study, we introduce an innovative computational framework known as TGC-ARG, designed to predict potential ARGs. TGC-ARG harnesses protein sequences as input, retrieves protein structures through SCRATCH-1D, and employs a feature extraction module to deduce feature representations for both protein sequences and structures. Subsequently, we integrate a siamese network to establish a contrastive learning paradigm, thus augmenting the model's representational capabilities. The resultant sequence embeddings and structure embeddings are merged and directed into a Multilayer Perceptron (MLP) for predicting ARG presence. To assess the performance, we curate a pioneering publicly available dataset named ARSS (Antibiotic Resistance Sequence Statistics). Our extensive comparative experimental outcomes underscore the superiority of our approach over the current state-of-the-art (SOTA) methodology. Furthermore, through comprehensive case analyses, we demonstrate the efficacy of our approach in predicting potential ARGs. The dataset and source code are accessible at https://github.com/angel1gel/TGC-ARG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦子发布了新的文献求助10
刚刚
麦子发布了新的文献求助10
刚刚
麦子发布了新的文献求助10
1秒前
以前发布了新的文献求助10
2秒前
IR1S0110发布了新的文献求助10
2秒前
大个应助球魁采纳,获得10
3秒前
雨雨雨雨发布了新的文献求助10
3秒前
麦子发布了新的文献求助10
3秒前
SYLH应助科研通管家采纳,获得30
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得20
3秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
Profeto应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得20
4秒前
5秒前
烟花应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得30
5秒前
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
SYLH应助科研通管家采纳,获得20
6秒前
踏实星星发布了新的文献求助10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496