亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TGC-ARG: Predicting Antibiotic Resistance through Transformer-based Modeling and Contrastive Learning

计算机科学 变压器 抗生素耐药性 抗生素 微生物学 工程类 生物 电压 电气工程
作者
Yihan Dong,Xiaowen Hu,Zhijian Huang,Lei Deng
标识
DOI:10.1109/bibm58861.2023.10385506
摘要

The escalating severity of antibiotic resistance poses substantial challenges across diverse sectors, encompassing everyday life, agriculture, and clinical medical interventions. Conventional methods for investigating antibiotic resistance genes (ARGs), such as culture-based techniques and whole-genome sequencing, often suffer from demands of time, labor, and limited accuracy. Moreover, the fragmented nature of existing datasets hampers a comprehensive analysis of antibiotic resistance gene sequences. In this study, we introduce an innovative computational framework known as TGC-ARG, designed to predict potential ARGs. TGC-ARG harnesses protein sequences as input, retrieves protein structures through SCRATCH-1D, and employs a feature extraction module to deduce feature representations for both protein sequences and structures. Subsequently, we integrate a siamese network to establish a contrastive learning paradigm, thus augmenting the model's representational capabilities. The resultant sequence embeddings and structure embeddings are merged and directed into a Multilayer Perceptron (MLP) for predicting ARG presence. To assess the performance, we curate a pioneering publicly available dataset named ARSS (Antibiotic Resistance Sequence Statistics). Our extensive comparative experimental outcomes underscore the superiority of our approach over the current state-of-the-art (SOTA) methodology. Furthermore, through comprehensive case analyses, we demonstrate the efficacy of our approach in predicting potential ARGs. The dataset and source code are accessible at https://github.com/angel1gel/TGC-ARG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助yolo采纳,获得10
5秒前
苯苯发布了新的文献求助10
9秒前
14秒前
ayun完成签到 ,获得积分10
15秒前
liuxiaohui发布了新的文献求助10
19秒前
啵子发布了新的文献求助10
27秒前
30秒前
33秒前
sugkook发布了新的文献求助10
35秒前
曾业辉发布了新的文献求助10
39秒前
47秒前
零知识发布了新的文献求助10
50秒前
粥粥大王完成签到,获得积分10
52秒前
粥粥大王发布了新的文献求助10
56秒前
652183758完成签到 ,获得积分10
1分钟前
1分钟前
所所应助柚子采纳,获得10
1分钟前
酷波er应助啵子采纳,获得10
1分钟前
丘比特应助曾业辉采纳,获得10
1分钟前
TXZ06完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Lumi发布了新的文献求助10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
苯苯完成签到,获得积分10
1分钟前
CipherSage应助苯苯采纳,获得10
2分钟前
科研通AI6.1应助洪子睿采纳,获得10
2分钟前
脑洞疼应助要减肥的冰姬采纳,获得30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
啵子发布了新的文献求助10
2分钟前
2分钟前
literature发布了新的文献求助10
2分钟前
MchemG应助零知识采纳,获得10
3分钟前
yolo完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780249
求助须知:如何正确求助?哪些是违规求助? 5653879
关于积分的说明 15452923
捐赠科研通 4910998
什么是DOI,文献DOI怎么找? 2643189
邀请新用户注册赠送积分活动 1590828
关于科研通互助平台的介绍 1545336