Designing Molecularly Imprinted Polymer-Modified Boron-Doped Diamond Electrodes for Highly Selective Electrochemical Drug Sensors

分子印迹聚合物 材料科学 钻石 毒品检测 电极 电化学 纳米技术 分子印迹 电化学气体传感器 检出限 组合化学 色谱法 选择性 化学 有机化学 复合材料 物理化学 催化作用
作者
Kanako Ishii,Genki Ogata,Takashi Yamamoto,Shuyi Sun,Hiroshi Shiigi,Yasuaki Einaga
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (3): 1611-1619 被引量:4
标识
DOI:10.1021/acssensors.4c00360
摘要

Drug detection in biological solutions is essential in studying the pharmacokinetics of the body. Electrochemical detection is an accurate and rapid method, but measuring multiple drugs that react at similar potentials is challenging. Herein, we developed an electrochemical sensor using a boron-doped diamond (BDD) electrode modified with a molecularly imprinted polymer (MIP) to provide specificity in drug sensing. The MIP is a polymer material designed to recognize and capture template molecules, enabling the selective detection of target molecules. In this study, we selected the anticancer drug doxorubicin (DOX) as the template molecule. In the electrochemical measurements using an unmodified BDD, the DOX reduction was observed at approximately -0.5 V (vs Ag/AgCl). Other drugs, i.e., mitomycin C or clonazepam (CZP), also underwent a reduction reaction at a similar potential to that of DOX, when using the unmodified BDD, which rendered the accurate quantification of DOX in a mixture challenging. Similar measurements conducted in PBS using the MIP-BDD only resulted in a DOX reduction current, with no reduction reaction observed in the presence of mitomycin C and CZP. These results suggest that the MIP, whose template molecule is DOX, inhibits the reduction of other drugs on the electrode surface. Selective DOX measurement using the MIP-BDD was also possible in human plasma, and the respective limits of detection of DOX in PBS and human plasma were 32.10 and 16.61 nM. The MIP-BDD was durable for use in six repeated measurements, and MIP-BDD may be applicable as an electrochemical sensor for application in therapeutic drug monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿友菌完成签到,获得积分10
1秒前
皮克斯完成签到 ,获得积分10
1秒前
黑米粥发布了新的文献求助10
1秒前
iu完成签到,获得积分10
1秒前
脑洞疼应助KX采纳,获得10
1秒前
大模型应助艺玲采纳,获得10
2秒前
ZXD完成签到,获得积分10
2秒前
2秒前
丞诺完成签到,获得积分10
2秒前
Ricardo完成签到,获得积分10
3秒前
深情安青应助孔雀翎采纳,获得10
3秒前
4秒前
4秒前
端庄的萝完成签到,获得积分10
4秒前
平淡南霜完成签到,获得积分10
4秒前
李健的粉丝团团长应助ppbb采纳,获得10
4秒前
Mr_Hao发布了新的文献求助20
5秒前
fff发布了新的文献求助10
5秒前
5秒前
CC发布了新的文献求助10
6秒前
eee发布了新的文献求助20
6秒前
HEIKU应助xinxinqi采纳,获得10
7秒前
keroro完成签到,获得积分10
7秒前
研友_VZG7GZ应助宋嬴一采纳,获得10
7秒前
祯果粒完成签到,获得积分10
7秒前
7秒前
王大炮完成签到 ,获得积分10
7秒前
不厌完成签到,获得积分10
8秒前
feifei关注了科研通微信公众号
8秒前
9秒前
香菜完成签到,获得积分20
9秒前
鲸是海蓝色完成签到 ,获得积分10
9秒前
英姑应助xhy采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
郑开司09发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672