Hybrid Reinforced Medical Report Generation With M-Linear Attention and Repetition Penalty

水准点(测量) 计算机科学 卷积神经网络 公制(单位) 人工智能 深度学习 过程(计算) 机器学习 模式识别(心理学) 运营管理 大地测量学 经济 地理 操作系统
作者
Zhenghua Xu,Wenting Xu,Ruizhi Wang,Junyang Chen,Qi Chang,Thomas Lukasiewicz
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:13
标识
DOI:10.1109/tnnls.2023.3343391
摘要

To reduce doctors' workload, deep-learning-based automatic medical report generation has recently attracted more and more research efforts, where deep convolutional neural networks (CNNs) are employed to encode the input images, and recurrent neural networks (RNNs) are used to decode the visual features into medical reports automatically. However, these state-of-the-art methods mainly suffer from three shortcomings: 1) incomprehensive optimization; 2) low-order and unidimensional attention; and 3) repeated generation. In this article, we propose a hybrid reinforced medical report generation method with m-linear attention and repetition penalty mechanism (HReMRG-MR) to overcome these problems. Specifically, a hybrid reward with different weights is employed to remedy the limitations of single-metric-based rewards, and a local optimal weight search algorithm is proposed to significantly reduce the complexity of searching the weights of the rewards from exponential to linear. Furthermore, we use m-linear attention modules to learn multidimensional high-order feature interactions and to achieve multimodal reasoning, while a new repetition penalty is proposed to apply penalties to repeated terms adaptively during the model's training process. Extensive experimental studies on two public benchmark datasets show that HReMRG-MR greatly outperforms the state-of-the-art baselines in terms of all metrics. The effectiveness and necessity of all components in HReMRG-MR are also proved by ablation studies. Additional experiments are further conducted and the results demonstrate that our proposed local optimal weight search algorithm can significantly reduce the search time while maintaining superior medical report generation performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助壮观的擎采纳,获得10
1秒前
3秒前
3秒前
闪电关注了科研通微信公众号
4秒前
魏源发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
Manar完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
zzx发布了新的文献求助10
8秒前
腾桑发布了新的文献求助30
8秒前
8秒前
8秒前
song发布了新的文献求助10
8秒前
玛卡巴卡发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
彭于晏应助魏源采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
许珍妮完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049