Hybrid Reinforced Medical Report Generation With M-Linear Attention and Repetition Penalty

水准点(测量) 计算机科学 卷积神经网络 公制(单位) 人工智能 深度学习 过程(计算) 机器学习 模式识别(心理学) 大地测量学 运营管理 操作系统 经济 地理
作者
Zhenghua Xu,Wenting Xu,Ruizhi Wang,Junyang Chen,Qi Chang,Thomas Lukasiewicz
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:13
标识
DOI:10.1109/tnnls.2023.3343391
摘要

To reduce doctors' workload, deep-learning-based automatic medical report generation has recently attracted more and more research efforts, where deep convolutional neural networks (CNNs) are employed to encode the input images, and recurrent neural networks (RNNs) are used to decode the visual features into medical reports automatically. However, these state-of-the-art methods mainly suffer from three shortcomings: 1) incomprehensive optimization; 2) low-order and unidimensional attention; and 3) repeated generation. In this article, we propose a hybrid reinforced medical report generation method with m-linear attention and repetition penalty mechanism (HReMRG-MR) to overcome these problems. Specifically, a hybrid reward with different weights is employed to remedy the limitations of single-metric-based rewards, and a local optimal weight search algorithm is proposed to significantly reduce the complexity of searching the weights of the rewards from exponential to linear. Furthermore, we use m-linear attention modules to learn multidimensional high-order feature interactions and to achieve multimodal reasoning, while a new repetition penalty is proposed to apply penalties to repeated terms adaptively during the model's training process. Extensive experimental studies on two public benchmark datasets show that HReMRG-MR greatly outperforms the state-of-the-art baselines in terms of all metrics. The effectiveness and necessity of all components in HReMRG-MR are also proved by ablation studies. Additional experiments are further conducted and the results demonstrate that our proposed local optimal weight search algorithm can significantly reduce the search time while maintaining superior medical report generation performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
瑞雪发布了新的文献求助10
2秒前
DrZOU发布了新的文献求助10
2秒前
yyy发布了新的文献求助10
2秒前
FashionBoy应助应三问采纳,获得10
3秒前
594zqz发布了新的文献求助10
4秒前
多宝鱼发布了新的文献求助10
5秒前
5秒前
动点子智慧完成签到,获得积分10
6秒前
小孙发布了新的文献求助10
6秒前
李爱国应助陈阳采纳,获得10
7秒前
by发布了新的文献求助10
7秒前
Felice完成签到,获得积分10
9秒前
10秒前
甜美念珍发布了新的文献求助20
12秒前
呵呵哒完成签到,获得积分10
12秒前
12秒前
喂鱼鱼完成签到,获得积分10
13秒前
14秒前
苗条寒梦发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
厦屿完成签到,获得积分10
15秒前
16秒前
Rforoeverad完成签到,获得积分10
16秒前
M1982发布了新的文献求助10
17秒前
鲤鱼树叶发布了新的文献求助10
19秒前
陈阳发布了新的文献求助10
19秒前
隐形曼青应助欣喜战斗机采纳,获得10
20秒前
20秒前
超棒的发布了新的文献求助10
21秒前
HR112应助喂鱼鱼采纳,获得10
21秒前
上官若男应助传统的鹏涛采纳,获得10
22秒前
喜之郎发布了新的文献求助10
22秒前
萧水白发布了新的文献求助100
24秒前
25秒前
LITAO完成签到,获得积分10
27秒前
Hello应助齐路明采纳,获得10
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329637
求助须知:如何正确求助?哪些是违规求助? 2959215
关于积分的说明 8594828
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443719
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656278