Hybrid Reinforced Medical Report Generation With M-Linear Attention and Repetition Penalty

水准点(测量) 计算机科学 卷积神经网络 公制(单位) 人工智能 深度学习 过程(计算) 机器学习 模式识别(心理学) 大地测量学 运营管理 操作系统 经济 地理
作者
Zhenghua Xu,Wenting Xu,Ruizhi Wang,Junyang Chen,Qi Chang,Thomas Lukasiewicz
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:13
标识
DOI:10.1109/tnnls.2023.3343391
摘要

To reduce doctors' workload, deep-learning-based automatic medical report generation has recently attracted more and more research efforts, where deep convolutional neural networks (CNNs) are employed to encode the input images, and recurrent neural networks (RNNs) are used to decode the visual features into medical reports automatically. However, these state-of-the-art methods mainly suffer from three shortcomings: 1) incomprehensive optimization; 2) low-order and unidimensional attention; and 3) repeated generation. In this article, we propose a hybrid reinforced medical report generation method with m-linear attention and repetition penalty mechanism (HReMRG-MR) to overcome these problems. Specifically, a hybrid reward with different weights is employed to remedy the limitations of single-metric-based rewards, and a local optimal weight search algorithm is proposed to significantly reduce the complexity of searching the weights of the rewards from exponential to linear. Furthermore, we use m-linear attention modules to learn multidimensional high-order feature interactions and to achieve multimodal reasoning, while a new repetition penalty is proposed to apply penalties to repeated terms adaptively during the model's training process. Extensive experimental studies on two public benchmark datasets show that HReMRG-MR greatly outperforms the state-of-the-art baselines in terms of all metrics. The effectiveness and necessity of all components in HReMRG-MR are also proved by ablation studies. Additional experiments are further conducted and the results demonstrate that our proposed local optimal weight search algorithm can significantly reduce the search time while maintaining superior medical report generation performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AAA完成签到,获得积分10
1秒前
江梦松发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
细心映寒发布了新的文献求助10
3秒前
小马甲应助zjuroc采纳,获得20
3秒前
yuhaha发布了新的文献求助30
3秒前
斯文败类应助直率尔芙采纳,获得10
4秒前
4秒前
科研通AI5应助学术蟑螂采纳,获得10
4秒前
4秒前
fei菲飞完成签到,获得积分20
4秒前
4秒前
4秒前
图苏完成签到,获得积分10
5秒前
6秒前
6秒前
善良友安发布了新的文献求助10
6秒前
6秒前
卑以自牧发布了新的文献求助10
7秒前
顺心的半兰完成签到 ,获得积分20
7秒前
selfevidbet发布了新的文献求助30
7秒前
7秒前
文忉嫣发布了新的文献求助10
7秒前
打工羊完成签到,获得积分10
7秒前
白衣未央完成签到,获得积分10
7秒前
阳光向秋发布了新的文献求助10
7秒前
7秒前
QL应助图苏采纳,获得30
8秒前
8秒前
hy完成签到,获得积分10
8秒前
粗暴的君浩完成签到,获得积分10
8秒前
8秒前
9秒前
大个应助立波采纳,获得10
9秒前
乐乐应助柔弱凡松采纳,获得10
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762