Roles of ultra-fine waste glass powder in early hydration of Portland cement: Hydration kinetics, mechanical performance, and microstructure

硅酸盐水泥 微观结构 材料科学 动力学 复合材料 水泥 量子力学 物理
作者
W.L. Lam,Yamei Cai,Keke Sun,Peiliang Shen,Chi Sun Poon
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:415: 135042-135042 被引量:6
标识
DOI:10.1016/j.conbuildmat.2024.135042
摘要

Reutilising waste glass powder (WGP) could be a promising alternative to supplementary cementitious materials (SCMs) because of its availability and carbon footprint reduction, especially in Hong Kong. However, concerns about the adverse effects on hydration and early strength have been raised and might limit concrete application. A wet grinding method was applied to convert WGP into ultra-fine particles, which could address these concerns and promote the application of WG as an alternative local SCM with a low carbon footprint. This study investigated the effect of wet grinding on WGP's physicochemical properties and how wet-ground WGP modified early hydration kinetics, mechanical performance, and microstructure of cement paste. The results indicated that ultra-fine WG was produced with the D50 of 500 nm and modified surface composition. Unlike micro-sized WGP, introducing ultra-fine WGP increased the 1-d strength by 50% and the 28-d strength by 5% of cement paste. The improvement of early strength could be attributed to three reasons. Firstly, the dissolution of ultra-fine WGP increased pH in the pore solution of the cement paste, which accelerated the hydration of C3A and C3S and promoted the precipitation of ettringite and the formation of C-S-H. Secondly, the submicron particles provided nucleation sites for C-S-H precipitation and increased the pozzolanic reactivity. Lastly, ultra-fine WGP could also effectively fill the pores in the cement paste, leading to a denser microstructure. According to the result, the reactivity of WG could be enhanced through wet-grinding and finely ground WGP could substitute reactive but costly binders, such as cement and silica fume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助STAN采纳,获得10
1秒前
1秒前
Droven完成签到 ,获得积分10
1秒前
长度2到发布了新的文献求助10
2秒前
sltg发布了新的文献求助10
3秒前
5秒前
6秒前
赘婿应助坦率初柔采纳,获得10
6秒前
852应助咩咩羊的杨采纳,获得10
6秒前
Eicky发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助成一采纳,获得10
8秒前
8秒前
正直无极关注了科研通微信公众号
8秒前
勤恳的铃铛完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助小杨采纳,获得10
11秒前
12秒前
天真的思远完成签到,获得积分10
12秒前
lzx完成签到,获得积分10
12秒前
12秒前
laiwei完成签到,获得积分10
13秒前
cccccc完成签到,获得积分20
14秒前
伯尔尼圆白菜完成签到,获得积分10
14秒前
平常山河发布了新的文献求助30
15秒前
15秒前
张小咩咩完成签到 ,获得积分10
15秒前
shuker完成签到,获得积分10
16秒前
16秒前
cccccc关注了科研通微信公众号
17秒前
英俊的铭应助稚气满满采纳,获得10
17秒前
长度2到完成签到,获得积分10
18秒前
18秒前
坦率初柔发布了新的文献求助10
18秒前
21秒前
21秒前
我是老大应助欢喜灵13采纳,获得10
22秒前
科研通AI2S应助河马卡卡采纳,获得10
23秒前
852应助Eicky采纳,获得10
23秒前
kkkche发布了新的文献求助10
23秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Treatise on Geomorphology(2nd Edition - March 1, 2022) 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3070024
求助须知:如何正确求助?哪些是违规求助? 2724039
关于积分的说明 7483616
捐赠科研通 2371113
什么是DOI,文献DOI怎么找? 1257302
科研通“疑难数据库(出版商)”最低求助积分说明 609889
版权声明 596879