Roles of ultra-fine waste glass powder in early hydration of Portland cement: Hydration kinetics, mechanical performance, and microstructure

硅酸盐水泥 微观结构 材料科学 动力学 复合材料 水泥 物理 量子力学
作者
W.L. Lam,Yamei Cai,Keke Sun,Peiliang Shen,Chi Sun Poon
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:415: 135042-135042 被引量:17
标识
DOI:10.1016/j.conbuildmat.2024.135042
摘要

Reutilising waste glass powder (WGP) could be a promising alternative to supplementary cementitious materials (SCMs) because of its availability and carbon footprint reduction, especially in Hong Kong. However, concerns about the adverse effects on hydration and early strength have been raised and might limit concrete application. A wet grinding method was applied to convert WGP into ultra-fine particles, which could address these concerns and promote the application of WG as an alternative local SCM with a low carbon footprint. This study investigated the effect of wet grinding on WGP's physicochemical properties and how wet-ground WGP modified early hydration kinetics, mechanical performance, and microstructure of cement paste. The results indicated that ultra-fine WG was produced with the D50 of 500 nm and modified surface composition. Unlike micro-sized WGP, introducing ultra-fine WGP increased the 1-d strength by 50% and the 28-d strength by 5% of cement paste. The improvement of early strength could be attributed to three reasons. Firstly, the dissolution of ultra-fine WGP increased pH in the pore solution of the cement paste, which accelerated the hydration of C3A and C3S and promoted the precipitation of ettringite and the formation of C-S-H. Secondly, the submicron particles provided nucleation sites for C-S-H precipitation and increased the pozzolanic reactivity. Lastly, ultra-fine WGP could also effectively fill the pores in the cement paste, leading to a denser microstructure. According to the result, the reactivity of WG could be enhanced through wet-grinding and finely ground WGP could substitute reactive but costly binders, such as cement and silica fume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盐汽水完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
cym完成签到,获得积分10
5秒前
hang发布了新的文献求助10
5秒前
Ava应助xh采纳,获得10
5秒前
wang完成签到,获得积分10
5秒前
真三完成签到,获得积分10
6秒前
爆米花应助猪头采纳,获得10
6秒前
今后应助工藤新一采纳,获得10
7秒前
黄豆完成签到,获得积分10
8秒前
田様应助huahua采纳,获得10
11秒前
小北发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助150
12秒前
13秒前
长江长发布了新的文献求助10
15秒前
蒯秀燕完成签到,获得积分10
16秒前
17秒前
小北完成签到,获得积分10
19秒前
19秒前
lv完成签到,获得积分10
20秒前
lym97完成签到 ,获得积分10
20秒前
20秒前
搜集达人应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
22秒前
栗子完成签到,获得积分10
22秒前
可靠的墨镜完成签到,获得积分10
22秒前
lv发布了新的文献求助10
23秒前
24秒前
zhangwj226完成签到,获得积分10
24秒前
26秒前
偏偏完成签到 ,获得积分10
26秒前
xh发布了新的文献求助10
26秒前
乔谷雪发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959270
求助须知:如何正确求助?哪些是违规求助? 4220131
关于积分的说明 13140182
捐赠科研通 4003550
什么是DOI,文献DOI怎么找? 2190882
邀请新用户注册赠送积分活动 1205485
关于科研通互助平台的介绍 1116832