Roles of ultra-fine waste glass powder in early hydration of Portland cement: Hydration kinetics, mechanical performance, and microstructure

硅酸盐水泥 微观结构 材料科学 动力学 复合材料 水泥 物理 量子力学
作者
W.L. Lam,Yamei Cai,Keke Sun,Peiliang Shen,Chi Sun Poon
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:415: 135042-135042 被引量:17
标识
DOI:10.1016/j.conbuildmat.2024.135042
摘要

Reutilising waste glass powder (WGP) could be a promising alternative to supplementary cementitious materials (SCMs) because of its availability and carbon footprint reduction, especially in Hong Kong. However, concerns about the adverse effects on hydration and early strength have been raised and might limit concrete application. A wet grinding method was applied to convert WGP into ultra-fine particles, which could address these concerns and promote the application of WG as an alternative local SCM with a low carbon footprint. This study investigated the effect of wet grinding on WGP's physicochemical properties and how wet-ground WGP modified early hydration kinetics, mechanical performance, and microstructure of cement paste. The results indicated that ultra-fine WG was produced with the D50 of 500 nm and modified surface composition. Unlike micro-sized WGP, introducing ultra-fine WGP increased the 1-d strength by 50% and the 28-d strength by 5% of cement paste. The improvement of early strength could be attributed to three reasons. Firstly, the dissolution of ultra-fine WGP increased pH in the pore solution of the cement paste, which accelerated the hydration of C3A and C3S and promoted the precipitation of ettringite and the formation of C-S-H. Secondly, the submicron particles provided nucleation sites for C-S-H precipitation and increased the pozzolanic reactivity. Lastly, ultra-fine WGP could also effectively fill the pores in the cement paste, leading to a denser microstructure. According to the result, the reactivity of WG could be enhanced through wet-grinding and finely ground WGP could substitute reactive but costly binders, such as cement and silica fume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助tzy采纳,获得10
1秒前
2秒前
BrianSivan关注了科研通微信公众号
2秒前
3秒前
小二郎应助frigst采纳,获得10
3秒前
koc完成签到,获得积分20
3秒前
xmhxpz发布了新的文献求助10
4秒前
嘿猪聪明完成签到,获得积分10
4秒前
懵懂的绿茶完成签到,获得积分10
4秒前
蜡笔小新完成签到,获得积分10
4秒前
夏熠完成签到,获得积分10
5秒前
乐观化蛹完成签到,获得积分10
5秒前
传奇3应助超级盼海采纳,获得50
5秒前
6秒前
fang完成签到,获得积分10
6秒前
Maggie完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
啊哦完成签到 ,获得积分10
7秒前
会飞的猪发布了新的文献求助10
9秒前
10秒前
科研通AI5应助神勇太清采纳,获得10
11秒前
Rain_BJ完成签到,获得积分10
11秒前
12秒前
爱听歌的依霜完成签到,获得积分10
12秒前
skj你考六级完成签到,获得积分10
13秒前
simon完成签到,获得积分10
13秒前
汉堡包应助qq采纳,获得10
14秒前
hhhhh哈哈哈完成签到,获得积分10
14秒前
欧皇降霖发布了新的文献求助10
15秒前
慕青应助会飞的猪采纳,获得10
16秒前
Muller完成签到,获得积分10
17秒前
蜡笔小新发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
chen完成签到,获得积分10
19秒前
20秒前
天天快乐应助饱满的亦旋采纳,获得10
20秒前
砰砰彭发布了新的文献求助10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143226
求助须知:如何正确求助?哪些是违规求助? 4341244
关于积分的说明 13519986
捐赠科研通 4181483
什么是DOI,文献DOI怎么找? 2293009
邀请新用户注册赠送积分活动 1293582
关于科研通互助平台的介绍 1236234