Deformable 3D medical image registration with convolutional neural network and transformer

计算机科学 人工智能 图像配准 变压器 卷积神经网络 Sørensen–骰子系数 计算机视觉 深度学习 相互信息 医学影像学 模式识别(心理学) 图像(数学) 图像分割 物理 量子力学 电压
作者
Liwei Deng,Yanchao Zou,Sijuan Huang,Xin Yang,Jing Wang
出处
期刊:Journal of Instrumentation [Institute of Physics]
卷期号:18 (04): P04029-P04029
标识
DOI:10.1088/1748-0221/18/04/p04029
摘要

Abstract Deformable registration of medical images based on deep learning has been the research focus this year. Convolutional Neural Network (CNN) and the transformer are the most common backbone and have been shown to enhance registration accuracy. However, CNN lacks the ability to contact long-distance information, and the transformer lacks the ability to capture local information. Whichever subtle feature loss may lead to disastrous consequences in the analysis of clinical medicine. This paper presented a novel registration network named Information Complementation Network (ICN). We aim to improve the registration accuracy by complementing the lost information. Pure transformers can establish long-distance spatial information about the image. Proposed meshing patch embedding can minimize the loss of local information and expand the receptive field to extract long-distance information. The dual-path decoder in ICN is designed to restore information furthest. We experimented on 3D brain MRI data and quantitatively compared several excellent registration models. Compared with conventional methods, the dice coefficient increased by 3%. Compared with the advanced methods, the dice coefficient increased by 1%. The number of foldings was reduced by about 50% without any loss of registration accuracy. Each evaluation metric of the trained models on liver CT images was higher than other methods. By fully complementing the lost or invalid information, ICN achieved higher registration accuracy and smoother deformation field. The innovation and contribution of this paper have the potential to be applied to clinical research or medical image processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助摆哥采纳,获得10
刚刚
priser de发布了新的文献求助10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
风吹麦田应助科研通管家采纳,获得30
1秒前
wlscj应助科研通管家采纳,获得20
1秒前
wanci应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
wlscj应助科研通管家采纳,获得20
2秒前
脑洞疼应助科研通管家采纳,获得80
2秒前
不想科研应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得50
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
222完成签到,获得积分20
4秒前
5秒前
BEGIN完成签到,获得积分10
6秒前
DH发布了新的文献求助10
8秒前
zlc完成签到,获得积分10
8秒前
liwang完成签到,获得积分10
9秒前
Jonathan完成签到,获得积分10
9秒前
羊羊发布了新的文献求助10
10秒前
榛糕李完成签到,获得积分10
11秒前
健忘芹完成签到,获得积分20
11秒前
11秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544