Deformable 3D medical image registration with convolutional neural network and transformer

计算机科学 人工智能 图像配准 变压器 卷积神经网络 Sørensen–骰子系数 计算机视觉 深度学习 相互信息 医学影像学 模式识别(心理学) 图像(数学) 图像分割 量子力学 物理 电压
作者
Liwei Deng,Yanchao Zou,Sijuan Huang,Xin Yang,Jing Wang
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:18 (04): P04029-P04029
标识
DOI:10.1088/1748-0221/18/04/p04029
摘要

Abstract Deformable registration of medical images based on deep learning has been the research focus this year. Convolutional Neural Network (CNN) and the transformer are the most common backbone and have been shown to enhance registration accuracy. However, CNN lacks the ability to contact long-distance information, and the transformer lacks the ability to capture local information. Whichever subtle feature loss may lead to disastrous consequences in the analysis of clinical medicine. This paper presented a novel registration network named Information Complementation Network (ICN). We aim to improve the registration accuracy by complementing the lost information. Pure transformers can establish long-distance spatial information about the image. Proposed meshing patch embedding can minimize the loss of local information and expand the receptive field to extract long-distance information. The dual-path decoder in ICN is designed to restore information furthest. We experimented on 3D brain MRI data and quantitatively compared several excellent registration models. Compared with conventional methods, the dice coefficient increased by 3%. Compared with the advanced methods, the dice coefficient increased by 1%. The number of foldings was reduced by about 50% without any loss of registration accuracy. Each evaluation metric of the trained models on liver CT images was higher than other methods. By fully complementing the lost or invalid information, ICN achieved higher registration accuracy and smoother deformation field. The innovation and contribution of this paper have the potential to be applied to clinical research or medical image processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助青木蓝采纳,获得10
刚刚
顾矜应助frank采纳,获得10
1秒前
heavennew完成签到,获得积分10
1秒前
充电宝应助绘梨衣采纳,获得10
2秒前
华仔应助励志小薛采纳,获得10
2秒前
2秒前
2秒前
单薄新烟发布了新的文献求助10
3秒前
3秒前
桐桐应助小王采纳,获得10
3秒前
4秒前
4秒前
4秒前
楚岸发布了新的文献求助10
6秒前
阿强哥20241101完成签到,获得积分10
6秒前
TQY完成签到,获得积分10
7秒前
Khr1stINK发布了新的文献求助10
7秒前
宁静致远完成签到,获得积分10
7秒前
mxbyccbaby完成签到,获得积分10
8秒前
8秒前
楼寒天发布了新的文献求助30
8秒前
8秒前
jdmeme完成签到 ,获得积分10
9秒前
DVD完成签到 ,获得积分10
10秒前
学术嫪毐完成签到,获得积分10
10秒前
Xyyy发布了新的文献求助10
11秒前
uu完成签到,获得积分10
11秒前
小蘑菇应助赵赵赵采纳,获得10
11秒前
阿兹卡班狂徒完成签到 ,获得积分10
11秒前
11秒前
yuefeng发布了新的文献求助10
12秒前
澳臻白发布了新的文献求助10
12秒前
13秒前
刘大妮发布了新的文献求助10
13秒前
13秒前
王欧尼发布了新的文献求助10
14秒前
sooya关注了科研通微信公众号
14秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794