已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deformable 3D medical image registration with convolutional neural network and transformer

计算机科学 人工智能 图像配准 变压器 卷积神经网络 Sørensen–骰子系数 计算机视觉 深度学习 相互信息 医学影像学 模式识别(心理学) 图像(数学) 图像分割 物理 量子力学 电压
作者
Liwei Deng,Yanchao Zou,Sijuan Huang,Xin Yang,Jing Wang
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:18 (04): P04029-P04029
标识
DOI:10.1088/1748-0221/18/04/p04029
摘要

Abstract Deformable registration of medical images based on deep learning has been the research focus this year. Convolutional Neural Network (CNN) and the transformer are the most common backbone and have been shown to enhance registration accuracy. However, CNN lacks the ability to contact long-distance information, and the transformer lacks the ability to capture local information. Whichever subtle feature loss may lead to disastrous consequences in the analysis of clinical medicine. This paper presented a novel registration network named Information Complementation Network (ICN). We aim to improve the registration accuracy by complementing the lost information. Pure transformers can establish long-distance spatial information about the image. Proposed meshing patch embedding can minimize the loss of local information and expand the receptive field to extract long-distance information. The dual-path decoder in ICN is designed to restore information furthest. We experimented on 3D brain MRI data and quantitatively compared several excellent registration models. Compared with conventional methods, the dice coefficient increased by 3%. Compared with the advanced methods, the dice coefficient increased by 1%. The number of foldings was reduced by about 50% without any loss of registration accuracy. Each evaluation metric of the trained models on liver CT images was higher than other methods. By fully complementing the lost or invalid information, ICN achieved higher registration accuracy and smoother deformation field. The innovation and contribution of this paper have the potential to be applied to clinical research or medical image processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖完成签到 ,获得积分10
刚刚
六六完成签到 ,获得积分10
刚刚
摆烂完成签到 ,获得积分10
刚刚
情怀应助李竞帆采纳,获得30
刚刚
pp完成签到 ,获得积分10
1秒前
彭于晏应助chcmuer采纳,获得30
2秒前
2秒前
fxy完成签到 ,获得积分10
3秒前
3秒前
3秒前
善学以致用应助访冬采纳,获得10
3秒前
浮游应助夜无疆采纳,获得30
3秒前
晓静完成签到 ,获得积分10
3秒前
min完成签到 ,获得积分10
4秒前
daigang完成签到 ,获得积分10
5秒前
栗子完成签到 ,获得积分10
7秒前
7秒前
康康发布了新的文献求助30
8秒前
10秒前
今后应助可耐的尔白采纳,获得10
11秒前
优秀的耳机完成签到,获得积分10
11秒前
14秒前
芜湖完成签到 ,获得积分10
14秒前
14秒前
领导范儿应助廷聿采纳,获得10
15秒前
Rua完成签到 ,获得积分10
16秒前
ym发布了新的文献求助10
16秒前
police完成签到 ,获得积分10
18秒前
gq完成签到 ,获得积分10
18秒前
Sarah发布了新的文献求助10
19秒前
linyi完成签到,获得积分10
20秒前
22秒前
小马甲应助康康采纳,获得10
22秒前
怜熙完成签到 ,获得积分10
23秒前
qiqi发布了新的文献求助10
24秒前
无情的访冬完成签到 ,获得积分10
25秒前
田様应助LXF采纳,获得10
25秒前
chuan发布了新的文献求助10
25秒前
李健应助yue采纳,获得10
25秒前
beriko完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462934
求助须知:如何正确求助?哪些是违规求助? 4567758
关于积分的说明 14311405
捐赠科研通 4493564
什么是DOI,文献DOI怎么找? 2461752
邀请新用户注册赠送积分活动 1450823
关于科研通互助平台的介绍 1425954