Deformable 3D medical image registration with convolutional neural network and transformer

计算机科学 人工智能 图像配准 变压器 卷积神经网络 Sørensen–骰子系数 计算机视觉 深度学习 相互信息 医学影像学 模式识别(心理学) 图像(数学) 图像分割 物理 量子力学 电压
作者
Liwei Deng,Yanchao Zou,Sijuan Huang,Xin Yang,Jing Wang
出处
期刊:Journal of Instrumentation [IOP Publishing]
卷期号:18 (04): P04029-P04029
标识
DOI:10.1088/1748-0221/18/04/p04029
摘要

Abstract Deformable registration of medical images based on deep learning has been the research focus this year. Convolutional Neural Network (CNN) and the transformer are the most common backbone and have been shown to enhance registration accuracy. However, CNN lacks the ability to contact long-distance information, and the transformer lacks the ability to capture local information. Whichever subtle feature loss may lead to disastrous consequences in the analysis of clinical medicine. This paper presented a novel registration network named Information Complementation Network (ICN). We aim to improve the registration accuracy by complementing the lost information. Pure transformers can establish long-distance spatial information about the image. Proposed meshing patch embedding can minimize the loss of local information and expand the receptive field to extract long-distance information. The dual-path decoder in ICN is designed to restore information furthest. We experimented on 3D brain MRI data and quantitatively compared several excellent registration models. Compared with conventional methods, the dice coefficient increased by 3%. Compared with the advanced methods, the dice coefficient increased by 1%. The number of foldings was reduced by about 50% without any loss of registration accuracy. Each evaluation metric of the trained models on liver CT images was higher than other methods. By fully complementing the lost or invalid information, ICN achieved higher registration accuracy and smoother deformation field. The innovation and contribution of this paper have the potential to be applied to clinical research or medical image processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dalei001完成签到 ,获得积分10
刚刚
zhuxd完成签到 ,获得积分10
4秒前
顺利的慕儿完成签到 ,获得积分10
5秒前
yutingemail完成签到 ,获得积分10
10秒前
小透明应助aaiirrii采纳,获得10
10秒前
儒雅龙完成签到 ,获得积分10
11秒前
和平完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
踏实的代曼应助aaiirrii采纳,获得10
15秒前
alanbike完成签到,获得积分10
16秒前
LIZHEN发布了新的文献求助10
20秒前
21秒前
量子星尘发布了新的文献求助10
25秒前
LIZHEN完成签到,获得积分10
26秒前
胖胖完成签到 ,获得积分0
26秒前
对对对完成签到 ,获得积分10
28秒前
CQ完成签到 ,获得积分10
28秒前
调皮的天真完成签到 ,获得积分10
28秒前
啊哈哈完成签到,获得积分10
34秒前
aaiirrii完成签到,获得积分10
38秒前
票子完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
41秒前
小玲子完成签到 ,获得积分10
41秒前
酷波er应助Max采纳,获得10
43秒前
小莫完成签到 ,获得积分10
45秒前
没有名字完成签到 ,获得积分10
48秒前
天玄完成签到 ,获得积分10
48秒前
Lotus完成签到,获得积分10
49秒前
自由的尔蓉完成签到 ,获得积分10
50秒前
53秒前
Max完成签到,获得积分20
54秒前
欢喜的尔冬完成签到,获得积分10
54秒前
Max发布了新的文献求助10
56秒前
可可西里完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
醉熏的幻莲完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
贪玩小蘑菇完成签到 ,获得积分10
1分钟前
sniper完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771649
捐赠科研通 4615679
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575