检查表
系统回顾
荟萃分析
计算机科学
预测建模
三脚架(摄影)
指南
领域(数学)
梅德林
数据科学
数据挖掘
医学
机器学习
心理学
病理
工程类
认知心理学
法学
纯数学
机械工程
数学
政治学
作者
Kirby Snell,Brooke Levis,Johanna AAG Damen,Paula Dhiman,Thomas P. A. Debray,Lotty Hooft,Johannes B. Reitsma,Karel G.M. Moons,Gary S. Collins,Richard D Riley
标识
DOI:10.1136/bmj-2022-073538
摘要
Most clinical specialties have a plethora of studies that develop or validate one or more prediction models, for example, to inform diagnosis or prognosis. Having many prediction model studies in a particular clinical field motivates the need for systematic reviews and meta-analyses, to evaluate and summarise the overall evidence available from prediction model studies, in particular about the predictive performance of existing models. Such reviews are fast emerging, and should be reported completely, transparently, and accurately. To help ensure this type of reporting, this article describes a new reporting guideline for systematic reviews and meta-analyses of prediction model research.
科研通智能强力驱动
Strongly Powered by AbleSci AI