Deep learning-based assessment of knee septic arthritis using transformer features in sonographic modalities

化脓性关节炎 医学 特征提取 深度学习 卷积神经网络 关节炎 计算机科学 人工智能 模式识别(心理学) 机器学习 内科学
作者
Chung‐Ming Lo,Kuo‐Lung Lai
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:237: 107575-107575 被引量:8
标识
DOI:10.1016/j.cmpb.2023.107575
摘要

Septic arthritis is an infectious disease. Conventionally, the diagnosis of septic arthritis can only be based on the identification of causal pathogens taken from synovial fluid, synovium or blood samples. However, the cultures require several days for the isolation of pathogens. A rapid assessment performed through computer-aided diagnosis (CAD) would bring timely treatment.A total of 214 non-septic arthritis and 64 septic arthritis images generated by gray-scale (GS) and Power Doppler (PD) ultrasound modalities were collected for the experiment. A deep learning-based vision transformer (ViT) with pre-trained parameters were used for image feature extraction. The extracted features were then combined in machine learning classifiers with ten-fold cross validation in order to evaluate the abilities of septic arthritis classification.Using a support vector machine, GS and PD features can achieve an accuracy rate of 86% and 91%, with the area under the receiver operating characteristic curves (AUCs) being 0.90 and 0.92, respectively. The best accuracy (92%) and best AUC (0.92) was obtained by combining both feature sets.This is the first CAD system based on a deep learning approach for the diagnosis of septic arthritis as seen on knee ultrasound images. Using pre-trained ViT, both the accuracy and computation costs improved more than they had through convolutional neural networks. Additionally, automatically combining GS and PD generates a higher accuracy to better assist the physician's observations, thus providing a timely evaluation of septic arthritis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得30
1秒前
Kir发布了新的文献求助10
1秒前
Z17应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
dong应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
2秒前
lingchuan发布了新的文献求助10
2秒前
Z17应助科研通管家采纳,获得10
2秒前
dong应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
Z17应助科研通管家采纳,获得10
2秒前
Genius完成签到,获得积分10
3秒前
Zhaobin完成签到,获得积分10
4秒前
SciGPT应助读书的时候采纳,获得10
4秒前
Lee完成签到 ,获得积分10
5秒前
5秒前
5秒前
AX完成签到,获得积分10
6秒前
wudizhuzhu233发布了新的文献求助10
6秒前
Re2411发布了新的文献求助10
7秒前
lingchuan完成签到,获得积分20
7秒前
shasha完成签到,获得积分10
7秒前
8秒前
gezid完成签到 ,获得积分10
8秒前
科研小白发布了新的文献求助10
8秒前
核桃应助聪明的宛菡采纳,获得10
8秒前
隐形曼青应助清凉茶采纳,获得10
9秒前
<・)))><<应助淘宝叮咚采纳,获得10
10秒前
zzzz发布了新的文献求助10
12秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
王倩完成签到 ,获得积分10
16秒前
16秒前
默默灭绝完成签到 ,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024074
求助须知:如何正确求助?哪些是违规求助? 3564002
关于积分的说明 11344012
捐赠科研通 3295249
什么是DOI,文献DOI怎么找? 1815021
邀请新用户注册赠送积分活动 889641
科研通“疑难数据库(出版商)”最低求助积分说明 813091