Deep learning-based assessment of knee septic arthritis using transformer features in sonographic modalities

化脓性关节炎 医学 特征提取 深度学习 卷积神经网络 关节炎 计算机科学 人工智能 模式识别(心理学) 机器学习 内科学
作者
Chung‐Ming Lo,Kuo‐Lung Lai
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:237: 107575-107575 被引量:8
标识
DOI:10.1016/j.cmpb.2023.107575
摘要

Septic arthritis is an infectious disease. Conventionally, the diagnosis of septic arthritis can only be based on the identification of causal pathogens taken from synovial fluid, synovium or blood samples. However, the cultures require several days for the isolation of pathogens. A rapid assessment performed through computer-aided diagnosis (CAD) would bring timely treatment.A total of 214 non-septic arthritis and 64 septic arthritis images generated by gray-scale (GS) and Power Doppler (PD) ultrasound modalities were collected for the experiment. A deep learning-based vision transformer (ViT) with pre-trained parameters were used for image feature extraction. The extracted features were then combined in machine learning classifiers with ten-fold cross validation in order to evaluate the abilities of septic arthritis classification.Using a support vector machine, GS and PD features can achieve an accuracy rate of 86% and 91%, with the area under the receiver operating characteristic curves (AUCs) being 0.90 and 0.92, respectively. The best accuracy (92%) and best AUC (0.92) was obtained by combining both feature sets.This is the first CAD system based on a deep learning approach for the diagnosis of septic arthritis as seen on knee ultrasound images. Using pre-trained ViT, both the accuracy and computation costs improved more than they had through convolutional neural networks. Additionally, automatically combining GS and PD generates a higher accuracy to better assist the physician's observations, thus providing a timely evaluation of septic arthritis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助shou85采纳,获得10
刚刚
namk完成签到,获得积分10
1秒前
诚心寄灵发布了新的文献求助10
1秒前
Soin应助白华苍松采纳,获得20
1秒前
Jasper应助科研通管家采纳,获得30
1秒前
情怀应助科研通管家采纳,获得10
2秒前
浅尝离白应助科研通管家采纳,获得30
2秒前
ShowMaker应助科研通管家采纳,获得30
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Jasper应助眼睛大的大娘采纳,获得10
3秒前
4秒前
inghai发布了新的文献求助10
5秒前
彩色的湘完成签到,获得积分10
6秒前
诚心寄灵完成签到,获得积分10
6秒前
潇洒雁梅完成签到,获得积分10
6秒前
xianyu完成签到,获得积分10
8秒前
畅快的胡萝卜完成签到,获得积分10
8秒前
饺子完成签到,获得积分10
9秒前
汉堡包应助wjw采纳,获得10
9秒前
Jasper应助Annie采纳,获得10
9秒前
幽默珩发布了新的文献求助10
10秒前
大橙子应助怕黑秋玲采纳,获得10
10秒前
汉堡包应助怕黑秋玲采纳,获得10
10秒前
一切随风完成签到,获得积分10
10秒前
wen完成签到,获得积分10
11秒前
窦白梦完成签到,获得积分0
12秒前
libra0009完成签到,获得积分10
13秒前
JamesPei应助嘎嘎嘎嘎采纳,获得10
14秒前
yjc发布了新的文献求助10
14秒前
inghai完成签到,获得积分20
14秒前
雷霆康康完成签到,获得积分10
15秒前
在水一方应助大雄采纳,获得10
15秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151772
求助须知:如何正确求助?哪些是违规求助? 2803175
关于积分的说明 7852148
捐赠科研通 2460566
什么是DOI,文献DOI怎么找? 1309864
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760