迭代学习控制
执行机构
控制理论(社会学)
解码方法
计算机科学
编码(内存)
控制器(灌溉)
跟踪误差
对数
趋同(经济学)
点(几何)
跟踪(教育)
扩展(谓词逻辑)
信号(编程语言)
算法
控制(管理)
人工智能
数学
生物
数学分析
经济
经济增长
程序设计语言
教育学
心理学
农学
几何学
作者
Yande Huang,Hongfeng Tao,Yiyang Chen,Eric Rogers,Wojciech Paszke
标识
DOI:10.1080/00207179.2023.2206496
摘要
This paper applies iterative learning control to point-to-point tracking problems with a general networked structure. The data is quantised and transmitted through restricted communication channels from the controller to the actuator. Combining a logarithmic quantizer with an encoding and decoding mechanism to quantise the input signals reduces the influence of the quantisation error. New design algorithms are developed with conditions for convergence of the tracking error and an extension to fault-tolerant performance under actuator failures. A numerical-based case study demonstrates the application of the new designs, which includes a comparison with another ILC law and the relative merits of the encoding and decoding schemes.
科研通智能强力驱动
Strongly Powered by AbleSci AI