Multiplex Graph Representation Learning Via Dual Correlation Reduction

计算机科学 瓶颈 理论计算机科学 图形 人工智能 机器学习 嵌入式系统
作者
Yujie Mo,Yuhuan Chen,Yajie Lei,Liang Peng,Xiaoshuang Shi,Changan Yuan,Xiaofeng Zhu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tkde.2023.3268069
摘要

Recently, with the superior capacity for analyzing the multiplex graph data, self-supervised multiplex graph representation learning (SMGRL) has received much interest. However, existing SMGRL methods are still limited by the following issues: (i) they generally ignore the noisy information within each graph and the common information among different graphs, thus weakening the effectiveness of SMGRL, and (ii) they conduct negative sample encoding and complex pretext tasks for contrastive learning, thus weakening the efficiency of SMGRL. To solve these issues, in this work, we propose a new framework to conduct effective and efficient SMGRL. Specifically, the proposed method investigates the intra-graph and inter-graph decorrelation losses, respectively, for reducing the impact of noisy information within each graph and capturing the common information among different graphs, to achieve the effectiveness. Moreover, the proposed method does not need negative samples for the SMGRL and designs a simple pretext task, to achieve the efficiency. We further theoretically justify that our method achieves the maximal mutual information instead of directly conducting contrastive learning and theoretically justify that our method actually minimizes the multiplex graph information bottleneck, which guarantees the effectiveness. In addition, an extension for semi-supervised scenarios is proposed to fit the case that a few labels are provided in reality. Extensive experimental results verify the effectiveness and efficiency of the proposed method with respect to various downstream tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yu发布了新的文献求助10
刚刚
刚刚
FML夏完成签到,获得积分10
1秒前
共享精神应助FY采纳,获得10
1秒前
终澈发布了新的文献求助10
1秒前
楼兰刀客发布了新的文献求助10
1秒前
无花果应助江南小水龟采纳,获得10
3秒前
调研昵称发布了新的文献求助10
3秒前
放寒假的发布了新的文献求助10
4秒前
4秒前
ma发布了新的文献求助10
4秒前
song完成签到,获得积分10
5秒前
X7发布了新的文献求助10
5秒前
丘比特应助刘璇1采纳,获得10
5秒前
wjz关注了科研通微信公众号
5秒前
5秒前
gumiho1007发布了新的文献求助10
5秒前
5秒前
6秒前
所所应助三点多采纳,获得10
6秒前
cc完成签到,获得积分10
8秒前
8秒前
9秒前
眼睛大傲旋完成签到,获得积分10
9秒前
10秒前
黎云完成签到,获得积分10
11秒前
会会会发布了新的文献求助10
11秒前
nanfeng发布了新的文献求助10
11秒前
Forever发布了新的文献求助10
12秒前
槐序深巷发布了新的文献求助30
12秒前
12秒前
深情安青应助xxpph采纳,获得10
14秒前
Karol发布了新的文献求助10
14秒前
南风发布了新的文献求助10
14秒前
万能图书馆应助Blummer采纳,获得10
15秒前
于哄哄发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助黄油包采纳,获得10
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459305
求助须知:如何正确求助?哪些是违规求助? 3053795
关于积分的说明 9038595
捐赠科研通 2743133
什么是DOI,文献DOI怎么找? 1504672
科研通“疑难数据库(出版商)”最低求助积分说明 695354
邀请新用户注册赠送积分活动 694664