A Novel Spiking Graph Attention Network for Intelligent Fault Diagnosis of Planetary Gearboxes

计算机科学 特征提取 稳健性(进化) 模式识别(心理学) 分类器(UML) 试验数据 人工智能 图形 数据挖掘 理论计算机科学 生物化学 化学 基因 程序设计语言
作者
Shunxin Cao,Hongkun Li,Kongliang Zhang,Chen Yang,Wei Xiang,Fubiao Sun
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (12): 13140-13154 被引量:13
标识
DOI:10.1109/jsen.2023.3269445
摘要

As an essential component in the power transmission system of rotating machinery, planetary gearboxes are often subjected to extreme operating conditions, including heavy loads and low speeds, which can cause key components to fail over time. Early planetary gearbox fault features are weak, coupled with the impact of strong noise in the industrial field, which brings great challenges to the accurate identification and diagnosis of planetary gearbox faults. To address these issues, we propose a novel spiking graph attention network (Spiking-GAT) for intelligent fault diagnosis of planetary gearboxes, which realizes synchronous extraction of temporal and spatial features of the original signal, to accurately identify the fault category and severity of planetary gearbox. First, a graph data construction method based on the chaos theory is proposed. A multiphase coupled chaotic oscillator array based on Duffing (MP-COAD) is established to reconstruct the original signal, and the K-nearest neighbor (KNN) classifier is used to construct the reconstructed signal as graph data. Second, a novel Spiking-GAT intelligent fault diagnosis framework has been developed, which provides an adaptive spiking coding approach for graph data and deep mining and extraction of spatial–temporal features to accurately identify the health status of planetary gearboxes. Finally, the experimental and industrial fault simulation test rigs of the planetary gearbox are designed, and three cases are studied to verify the accuracy and stability of Spiking-GAT. The results show that the classification accuracy of Spiking-GAT reaches 100% on the datasets of the two test rigs and has excellent noise robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
沉默的阁发布了新的文献求助10
刚刚
努恩完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
chill完成签到,获得积分10
1秒前
YSM应助菠菜采纳,获得100
1秒前
大气夜山完成签到 ,获得积分10
1秒前
唐尔曼发布了新的文献求助10
2秒前
司空剑封完成签到,获得积分10
3秒前
Ta沓如流星完成签到,获得积分10
3秒前
RenatoCai完成签到 ,获得积分10
3秒前
Andy发布了新的文献求助10
3秒前
3秒前
weiwei完成签到 ,获得积分10
3秒前
3秒前
3秒前
Let It Be完成签到 ,获得积分10
4秒前
小冯完成签到 ,获得积分10
4秒前
4秒前
华仔应助学习中勿扰采纳,获得10
4秒前
Gilana完成签到,获得积分10
4秒前
内向的绝施完成签到 ,获得积分10
4秒前
感谢有你完成签到 ,获得积分10
4秒前
快乐谷蓝发布了新的文献求助10
4秒前
qqq完成签到 ,获得积分10
4秒前
虞访云发布了新的文献求助10
4秒前
diyi完成签到,获得积分10
5秒前
司空笑白完成签到,获得积分20
6秒前
霸气凡白完成签到,获得积分10
6秒前
Leohp完成签到,获得积分10
7秒前
广州南完成签到 ,获得积分10
7秒前
benj完成签到,获得积分10
7秒前
勤恳风华完成签到,获得积分10
8秒前
十七完成签到,获得积分10
8秒前
better11发布了新的文献求助10
8秒前
yang杨完成签到,获得积分10
8秒前
木木完成签到,获得积分10
8秒前
popo完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666670
求助须知:如何正确求助?哪些是违规求助? 3225617
关于积分的说明 9764084
捐赠科研通 2935444
什么是DOI,文献DOI怎么找? 1607713
邀请新用户注册赠送积分活动 759338
科研通“疑难数据库(出版商)”最低求助积分说明 735261