催化作用
氧化态
X射线吸收光谱法
镓
吸收(声学)
光谱学
吸收光谱法
材料科学
氧化物
氧烷
扩展X射线吸收精细结构
脱氢
化学
分析化学(期刊)
物理化学
物理
有机化学
量子力学
复合材料
作者
Li Li,Jason Chalmers,Simon R. Bare,Susannah L. Scott,Fernando D. Vila
标识
DOI:10.1021/acscatal.3c01021
摘要
Gallium-based heterogeneous catalysts originally developed for commercial use in propane dehydroaromatization have been explored extensively as potential replacements for Pt- and Cr-based catalysts used in propane dehydrogenation for on-demand propylene production. In a large number of experimental and theoretical studies, active sites with a variety of Ga nuclearities, coordination environments, and oxidation states have been proposed. Isolated Ga(I) ions are often invoked, despite the scarcity of well-defined molecular species and their well-documented instability. In this study, we investigate the appearance of a high-intensity, low-energy white line at the Ga K-edge upon reduction of Ga/HZSM-5 by H2 at a temperature of ca. 500 °C, accompanied by a dramatic reduction in the extended X-ray absorption fine structure (EXAFS) intensity. In contrast, Ga/γ-Al2O3 does not show such behavior. In order to lay a rigorous foundation for characterizing these types of systems and to establish experimental signatures for the elusive Ga(I) oxidation state, we recorded Ga K-edge X-ray absorption spectra [including high-energy-resolution fluorescence detection-X-ray absorption near-edge spectroscopy (HERFD-XANES)] for several well-defined molecular and crystalline Ga(I) compounds. XANES is essential to establishing the presence of Ga(I), despite the overlap in edge energies with organoGa(III) compounds, because Ga(I)-containing oxide materials show very weak EXAFS scattering. Compared to the XANES of trigonal Ga(III)-containing materials, Ga(I) spectra display a significantly more intense white line feature. Theoretical simulations agree well with this experimental observation and reveal that the strong XANES intensity originates from the superposition of transitions to several empty, nearly degenerate p-like states. These signatures provide compelling evidence for assigning the intense white line and dramatic loss of EXAFS intensity in Ga/HZSM-5 to the near-quantitative reduction of Ga(III) to Ga(I), while the weaker white line and conventional EXAFS signal of Ga/γ-Al2O3 point to, at most, a minor fraction of Ga(I) sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI