🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Precipitation Nowcasting Based on Deep Learning over Guizhou, China

临近预报 定量降水预报 外推法 降水 计算机科学 预测技巧 时间序列 气象学 人工智能 机器学习 环境科学 统计 数学 地理
作者
Dexuan Kong,Xiefei Zhi,Yan Ji,Chunyan Yang,Yuhong Wang,Yuntao Tian,Gang Li,Xiaotuan Zeng
出处
期刊:Atmosphere [MDPI AG]
卷期号:14 (5): 807-807 被引量:4
标识
DOI:10.3390/atmos14050807
摘要

Accurate precipitation nowcasting (lead time: 0–2 h), which requires high spatiotemporal resolution data, is of great relevance in many weather-dependent social and operational activities. In this study, we are aiming to construct highly accurate deep learning (DL) models to directly obtain precipitation nowcasting at 6-min intervals for the lead time of 0–2 h. The Convolutional Long Short-Term Memory (ConvLSTM) and Predictive Recurrent Neural Network (PredRNN) models were used as comparative DL models, and the Lucas–Kanade (LK) Optical Flow method was selected as a traditional extrapolation baseline. The models were trained with high-quality datasets (resolution: 1 min) created from precipitation observations recorded by automatic weather stations in Guizhou Province (China). A comprehensive evaluation of the precipitation nowcasting was performed, which included consideration of the root mean square error, equitable threat score (ETS), and probability of detection (POD). The evaluation indicated that the reduction of the number of missing values and data normalization boosted training efficiency and improved the forecasting skill of the DL models. Increasing the time series length of the training set and the number of training samples both improved the POD and ETS of the DL models and enhanced nowcasting stability with time. Training with the Hea-P dataset further improved the forecasting skill of the DL models and sharply increased the ETS for thresholds of 2.5, 8, and 15 mm, especially for the 1-h lead time. The PredRNN model trained with the Hea-P dataset (time series length: 8 years) outperformed the traditional LK Optical Flow method for all thresholds (0.1, 1, 2.5, 8, and 15 mm) and obtained the best performance of all the models considered in this study in terms of ETS. Moreover, the Method for Object-Based Diagnostic Evaluation on a rainstorm case revealed that the PredRNN model, trained well with high-quality observation data, could both capture complex nonlinear characteristics of precipitation more accurately than achievable using the LK Optical Flow method and establish a reasonable mapping network during drastic changes in precipitation. Thus, its results more closely matched the observations, and its forecasting skill for thresholds exceeding 8 mm was improved substantially.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhouYW完成签到,获得积分10
2秒前
樱桃小丸子完成签到,获得积分10
2秒前
zoe完成签到 ,获得积分10
4秒前
脑洞疼应助Cai采纳,获得10
4秒前
CGBY完成签到 ,获得积分10
4秒前
英俊的铭应助joinn采纳,获得10
5秒前
ldy完成签到 ,获得积分10
6秒前
8秒前
煮饭吃Zz完成签到 ,获得积分10
9秒前
勤奋完成签到,获得积分0
10秒前
史克珍香完成签到 ,获得积分10
13秒前
大肥猫发布了新的文献求助10
16秒前
joinn完成签到,获得积分10
18秒前
海意完成签到,获得积分10
26秒前
和谐的映梦完成签到,获得积分10
26秒前
忧郁觅柔完成签到 ,获得积分10
28秒前
小文完成签到 ,获得积分10
28秒前
爱科研的小虞完成签到 ,获得积分10
32秒前
绿袖子完成签到,获得积分10
33秒前
不如吃茶去完成签到,获得积分10
34秒前
慕青应助忧郁觅柔采纳,获得10
37秒前
41秒前
大白不白完成签到,获得积分10
43秒前
Jankim完成签到 ,获得积分10
45秒前
51秒前
marska完成签到,获得积分10
54秒前
松绿格完成签到 ,获得积分10
55秒前
jkaaa完成签到,获得积分10
59秒前
禾中丨小骨完成签到 ,获得积分10
1分钟前
王博士完成签到,获得积分10
1分钟前
李成恩完成签到 ,获得积分10
1分钟前
独特的忆彤完成签到 ,获得积分10
1分钟前
1分钟前
LiuBin完成签到 ,获得积分20
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
邓代容完成签到 ,获得积分10
1分钟前
缺粥完成签到 ,获得积分10
1分钟前
笑点低的硬币完成签到 ,获得积分10
1分钟前
依依完成签到,获得积分10
1分钟前
小小铱完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3604043
求助须知:如何正确求助?哪些是违规求助? 3172183
关于积分的说明 9573263
捐赠科研通 2878211
什么是DOI,文献DOI怎么找? 1580883
邀请新用户注册赠送积分活动 743263
科研通“疑难数据库(出版商)”最低求助积分说明 725900